K-insertion and k-deletion closure of languages

Lila Kari and Gabriel Thierrin Department of Mathematics University of Western Ontario N6A 5B7 London, Ontario Canada email: lkari@julian.uwo.ca

Abstract

The operation of k-insertion (k-deletion) is a generalization of the catenation (quotient) of words and languages. The k-insertion of w into $u = u_1u_2$ consists of all words u_1wu_2 where the length of u_2 is at most k (k-deletion is performed in a analogous fashion). To a language L we associate the set k-ins(L) (k-del(L)) consisting of words with the following property: their k-insertion into (k-deletion from) any word of L yields words which also belong to L. We study properties of these languages and of languages which are k-insertion (k-deletion) closed.

¹Mathematics Subject Classification. Primary 68Q45; Secondary 20M35.

 $^{^2\}mathrm{This}$ research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada

³All correspondence to Lila Kari.

1 Introduction

The insertion and deletion operations have been introduced in [4] as natural generalizations of catenation, respectively right/left quotient: instead of adding (erasing) a word to (from) the right extremity of another, we insert (delete) it into (from) an arbitrary position.

Even though insertion generalizes catenation, catenation cannot be obtained as a particular case of it, as we cannot force the insertion to take place at the end of the word. The k-insertion (introduced in [3] under the name of k-catenation) provides the control needed to overcome this drawback. The k-insertion is thus more nondeterministic than catenation, but more restrictive than insertion. When k-inserting w into $u = u_1u_2$ we obtain all words u_1wu_2 where the length of u_2 is at most k. Remark that now 0-insertion is exactly the classical catenation. The operation of k-deletion (introduced in [3] under the name of k-quotient) is analogously defined: the deletion takes place in at most k + 1 positions. The 0-deletion amounts thus to the right quotient.

Among other notions connected with insertion and deletion operations, in [1] the insertion and deletion closure of a language L have been defined and studied. This paper introduces similar notions related to the operations of k-insertion and k-deletion. Namely, to a language L we associate the set k-ins(L) (respectively k-del(L)) consisting of the words with the property that, when k-inserted into (k-deleted from) any word of L, produce words still belonging to L.

Sections 2, 3 focus on these notions. Using the dual operation of dipolar k-deletion, both k-ins(L) and k-del(L) can be constructed. Moreover, procedures of constructing the k-insertion closure and k-deletion closure of a language are given.

When a language equals its k-insertion (k-deletion) closure, it is called k-ins-closed (resp. k-del-closed). If a language L is k-ins-closed, its words can either be obtained from other words of L by k-insertion, or can be "minimal" in this sense. The k-insertion base of L consists of all words which belong to the second category. We show that, if a language is regular, then its k-ins-base is also regular.

Section 4 deals with right k-unitary subsemigroups, that is subsemigroups S with the property that $u = u_1u_2 \in S$, $u_1xu_2 \in S$, $|u_2| \leq k$ implies $x \in S$. A method for obtaining the right k-unitary closure of a language is given.

Section 5 addresses the issue of minimal k-ins-closed languages. In general there is no minimal k-ins-closed language in X^* , therefore other restrictions on the minimality condition have to be added in order to obtain a positive result. Right m-density is such a condition: every right m-dense and k-ins-closed language L contains a minimal right m-dense and k-ins-closed language. Moreover, we show that every minimal right m-dense and k-ins-closed language contains a maximal prefix code P such that P^* is right m-dense.

In the sequel, X denotes a finite alphabet and X^* the free monoid generated

by X under the catenation operation. 1 is the empty word and, for a word $u \in X^*$, |u| denotes the length of w. A language L is called commutative if for every word $w \in L$, the language L contains all the words obtained from w by arbitrarily permuting its letters. For further undefined notions and notations the reader is referred to [6] and [7].

2 K-insertion closure

Given two words $u, v \in X^*$, the insertion of v into u is defined as $u \leftarrow v = \{u_1vu_2 | u = u_1u_2\}$. The operation of k-insertion restricts the generality of insertion by allowing words to be inserted only in at most k+1 positions. More precisely, let $L_1, L_2 \subseteq X^*$ and let k be a non-negative integer. The k-insertion of L_2 into L_1 is the language $L_1 \leftarrow^k L_2 = \bigcup_{u \in L_1, v \in L_2} (u \leftarrow^k v)$ where

$$u \leftarrow^k v = \{u_1 v u_2 \mid u = u_1 u_2, |u_2| \le k\}$$

The 0-insertion of L_2 into L_1 is the catenation L_1L_2 .

Clearly $L_1 \leftarrow^k L_2 \subseteq L_1 \leftarrow^{k+i} L_2$ and $L_1 \leftarrow L_2 = \bigcup_{k \ge 0} L_1 \leftarrow^k L_2$ where $L_1 \leftarrow L_2$ is the sequential insertion of L_2 into L_1 .

Examples. Let $X = \{a, b\}$.

(i) Let $L_1 = a^*$, $L_2 = \{b\}$. Then, $L_1 \leftarrow^k L_2 = a^*b \cup a^*ba \cup \ldots \cup a^*ba^k$. Note that $L_1 \leftarrow^k L_2 \subset L_1 \leftarrow^{k+i} L_2$, i.e. the sequence of k-insertions is infinite (and strict).

(ii) Let $L_1 = a^*b \cup a^*b^2 \cup a^*b^3$ and $L_2 = \{a^+\}$. Note that $L_1 \leftarrow^3 L_2 = L_1 \leftarrow^{3+i} L_2 = \{a^*b^ia^+ | i = 1, 2, 3\} \cup \{a^+b^i | i = 1, 2, 3\} \cup a^*ba^+b \cup a^*b^2a^+b \cup a^*ba^+b^2$. The sequence of k-insertions can be finite even with infinite languages.

Proposition 2.1 ([3]) The families of regular, context-free and context-sensitive languages are closed under k-insertion.

Let $L \subseteq X^*$. To the language L one can associate the set k-ins(L) consisting of all words with the following property: their k-insertion into any word of L yields a word belonging to L. Formally, k-ins(L) is defined by:

$$k - ins(L) = \{ x \in X^* | \forall u \in L, u = u_1 u_2, |u_2| \le k \implies u_1 x u_2 \in L \}.$$

Examples. Let $X = \{a, b\}$. Then,

 $-k-ins(X^*) = X^*$ while $k-ins(L_{ab}) = L_{ab}$, where $L_{ab} = \{w \in X^* | w \text{ has the same number of } a$'s and b's};

 $\begin{array}{l} -\text{ if } L = \{a^n b^n | n \ge 0\} \text{ then } k - ins(L) = \{1\}; \\ -\text{ if } L_1 = (a^2)^*, \ L_2 = aL_1 \text{ then } k - ins(L_1) = L_1 \text{ and } k - ins(L_2) = L_1; \\ -\text{ if } L = b^* ab^* \text{ then } k - ins(L) = b^*; \\ -\text{ if } L = aX^*b \text{ then } 0 - ins(L) = 1 - ins(L) = X^*b \text{ and } k - ins(L) = aX^*b \text{ for } k \ge 2. \end{array}$

Proposition 2.2 k-ins(L) is a submonoid of X^* . Moreover, if L is a commutative language, then k-ins(L) is also a commutative language.

Proof. Let $x, y \in k-ins(L)$ and $u = u_1u_2 \in L$, $|u_2| \leq k$. Then $u_1xu_2 \in L$, $u_1xyu_2 \in L$, hence $xy \in k-ins(L)$. Since $1 \in k-ins(L)$, k-ins(L) is not empty and hence a submonoid of X^* .

For the second claim, it is sufficient to show that $xuvy \in k-ins(L)$ implies $xvuy \in k-ins(L)$. If $w \in L$, $w = w_1w_2$, $|w_2| \leq k$, then $w_1xuvyw_2 \in L$, hence $w_1xvuyw_2 \in L$. Therefore $xvuy \in k-ins(L)$. \Box

In [1], in order to construct the language ins(L) from L, the dipolar deletion operation was used: $u \rightleftharpoons v = \{x \in X^* | u = v_1 x v_2, v = v_1 v_2\}$. In the case of k-insertion, for the same purpose, we will make use of a similar operation, the dipolar k-deletion. For u, v words over X, the dipolar k-deletion $u \rightleftharpoons^k v$ is defined by $u \rightleftharpoons^k v = \{x \in X^* | u = v_1 x v_2, v = v_1 v_2, |v_2| \le k\}$. (The operation has been introduced in [3] under the name of k-deletion.) In other words, the dipolar k-deletion erases from u a prefix v_1 of any length and a suffix v_2 of length $\le k$ whose catenation $v_1 v_2$ equals v. The operation can be extended to languages in the natural fashion. If L_1 and L_2 are two languages, then the dipolar k-deletion of L_2 from L_1 is the language

$$L_1 \rightleftharpoons^k L_2 = \bigcup_{u \in L_1, v \in L_2} u \rightleftharpoons^k v$$

Note that the dipolar deletion of L_2 from L_1 , satisfies

$$L_1 \rightleftharpoons L_2 = \bigcup_{k>0} L_1 \rightleftharpoons^k L_2$$
.

We are now ready to construct the set k-ins(L) for a given language L.

Proposition 2.3 $k-ins(L) = (L^c \rightleftharpoons^k L)^c$.

Proof. Take $x \in k-ins(L)$. Assume, for the sake of contradiction, that $x \notin (L^c \rightleftharpoons^k L)^c$. Then $x \in (L^c \rightleftharpoons^k L)$, that is, there exist $u_1 x u_2 \in L^c$, $u_1 u_2 \in L$, $|u_2| \leq k$, such that $x \in u_1 x u_2 \rightleftharpoons^k u_1 u_2$. We arrived at a contradiction, as $x \in k-ins(L)$ and $u_1 u_2 \in L$, $|u_2| \leq k$, but the k-insertion of x into $u_1 u_2$ belongs to L^c .

Consider now a word $x \in (L^c \rightleftharpoons^k L)^c$. If $x \notin k-ins(L)$, there exists $u_1u_2 \in L$, $|u_2| \leq k$ such that $u_1xu_2 \notin L$. This further implies $u_1xu_2 \in L^c$ and $x \in L^c \rightleftharpoons^k L$ – a contradiction with the original assumptions about x. \Box

Corollary 2.1 If the language L is regular, then k-ins(L) is regular and can be effectively constructed.

Proof. It has been proved in [3] that if L is regular, then $L \rightleftharpoons^k R$ is regular and moreover, the proof is constructive. Since L is regular, L^c is regular. This implies that $L^c \rightleftharpoons^k L$ is regular, hence $k - ins(L) = (L^c \rightleftharpoons^k L)^c$ is regular. \Box

A nonempty subset $S \subseteq X^*$ such that $u \in S$, $v \in S$, imply $u \leftarrow^k v \subseteq S$ is called a k-subsemigroup (see [3]). Clearly S is a subsemigroup of X^* . If S contains the identity, it is called a k-submonoid. A language L such that $L \subseteq k$ -ins(L) is called k-ins-closed. It is easy to see that a language L is k-ins-closed iff it is a k-subsemigroup.

If nonempty, the intersection of k-ins-closed languages is a k-ins-closed language. Let L be a nonempty language and let KI_L be the family of all the k-ins-closed languages containing L. This family is nonempty because $X^* \in KI_L$. The intersection

$$KI(L) = \bigcap_{L_i \in KI_L} L_i$$

of the languages belonging to the family KI_L is clearly a k-ins-closed language containing L and it is called the k-ins-closure of L. The k-ins-closure of a language L is the smallest k-ins-closed language containing L.

Notice that a language L is k-ins-closed iff $L \leftarrow^k L \subseteq L$. Indeed, if $x \in L$, $u_1u_2 \in L$, $|u_2| \leq k$, then, as $x \in L \subseteq k-\text{ins}(L)$ we have that $u_1xu_2 \in L$. For the other implication, take $x \in L$ and $u_1u_2 \in L$, $|u_2| \leq k$. As $L \leftarrow^k L \subseteq L$ we have that $u_1xu_2 \in L$ which shows that $x \in k-\text{ins}(L)$.

The k-insertion of order n of L_2 into L_1 is inductively defined by the equations:

$$L_1 \leftarrow^{k(0)} L_2 = L_1$$
...
$$L_1 \leftarrow^{k(i+1)} L_2 = (L_1 \leftarrow^{k(i)} L_2) \leftarrow^k L_2, \ i \ge 0$$

The iterated sequential k-insertion of L_2 into L_1 is defined by:

$$L_1 \leftarrow^{k*} L_2 = \bigcup_{n \ge 0} (L_1 \leftarrow^{k(n)} L_2).$$

Examples. (i) Let $L_1 = a^+ba^k$ and $L_2 = \{a\}$. Then: $L_1 \leftarrow^{k*} L_2 = a^+b(a^*)a^k$. (ii) Let $L_1 = ba^+ba^k$ and $L_2 = \{a\}$. Then $L_1 \leftarrow^{k*} L_2 = ba^+b(a^*)a^k$.

Proposition 2.4 The k-insertion closure of a language L is $KI(L) = L \leftarrow^{k*} L$.

Proof. " $KI(L) \subseteq L \leftarrow^{k*} L$ ". Obvious, as $L \leftarrow^{k*} L$ is k-ins-closed and L is included in $L \leftarrow^{k*} L$.

" $L \leftarrow^{k*} L \subseteq KI(L)$ " We show by induction on n that $L \leftarrow^{k(n)} L \subseteq KI(L)$. For n = 0 the assertion holds, as $L \subseteq KI(L)$. Assume that $L \leftarrow^{k(n)} L \subseteq KI(L)$ and consider a word $u \in L \leftarrow^{k(n+1)} L = (L \leftarrow^{k(n)} L) \leftarrow^{k} L$. Then $u = u_1 v u_2$, $|u_2| \leq k$, where $u_1 u_2 \in L \leftarrow^{k(n)} L$ and $v \in L$. As both $L \leftarrow^{k(n)} L$ and L are included in KI(L) and KI(L) is k-ins-closed, we deduce that $u \in KI(L)$.

The induction step, and therefore the requested equality are proved. \Box

Let $L \subseteq X^*$ be a k-ins-closed language. As the result of the k-insertion of two words in L always belongs to L, we can divide the words of L into two categories: words that can be obtained as the result of k-insertions of other words of L, and words that cannot be obtained in this fashion.

Consider the set

$$KB(L) = \{ u \in L | \ u \neq 1, u \notin ((L \setminus \{1\}) \leftarrow^k (L \setminus \{1\})) \} = L \setminus ((L \setminus \{1\}) \leftarrow^{k+} (L \setminus \{1\})),$$

i.e., KB(L) consists of the words of L that are not the result of k-insertions of any words of L. Then KB(L) is uniquely determined and $L \setminus \{1\} = (KB(L) \leftarrow^{k*} KB(L))$. KB(L) is called the k-ins-base of L.

The following result shows that if L is regular, its k-ins-base is also regular. The proof is based on the fact that one can construct a generalized sequential machine (for the definition see for example [6]) g such that g(L) is the set of words in L that can be obtained as results of k-insertions.

Proposition 2.5 If L is a regular k-ins-closed language, then its k-ins-base KB(L) is a regular language.

Proof. Let L be a regular k-ins-closed language. We can assume, without loss of generality, that L is 1-free. Let $A = (X, S, s_0, F, P)$ be a finite deterministic automaton accepting L, where $S = \{s_0, s_1, \ldots, s_n\}$ and the rules of P are of the form $s_i a \longrightarrow s_j, s_i, s_j \in S, a \in X$.

We will show that there exists a generalized sequential machine g such that $g(L) = L \setminus KB(L)$. As the family of regular languages is closed under gsm mappings and set difference, it will follow that KB(L) is regular.

Notice first that, as L is k-ins-closed, $L \setminus KB(L) = \{ u \in L | u = v_1 w v_2, w \in L, v_1 v_2 \in L, |v_2| \le k \}.$

Consider now the gsm $g = (X, X, S', s_0, F', P')$ where

$$S' = S \cup \{s_j^{(i)} \mid 0 \le j \le n, 0 \le i \le n\} \cup \{s_{i,j} \mid s_i \in F, 0 \le j \le k\}$$

ι

$$S' = \{s_i a \longrightarrow a s_m | s_i a \longrightarrow s_m \in P\}$$

$$(1)$$

$$\bigcup \{s_i a \longrightarrow a s_j^{(\gamma)} \mid s_0 a \longrightarrow s_j \in P\}$$

$$(2)$$

(1)

$$\cup \quad \{s_{j}^{(s)}a \longrightarrow as_{m}^{(s)} | \ s_{j}a \longrightarrow s_{m} \in P, 0 \le i \le n\}$$

$$(3)$$

$$\cup \{s_i^{(i)}a \longrightarrow as_{i,0} | s_ja \longrightarrow s_l \in P, s_l \in F\}$$

$$\tag{4}$$

$$= \{s_{i,j}a \longrightarrow as_{m,j+1} | s_ia \longrightarrow s_m \in P, 1 \le j \le k-1\}$$

$$(5)$$

The idea of the proof is the following. We have constructed card(S) indexed copies of the automaton A, $A^{(i)} = (X, S^{(i)}, s_0^{(i)}, F^{(i)}, P^{(i)}), 1 \le i \le n$. Given a word $v_1wv_2 \in L$, the gsm g works as follows.

The rules (1) scan the word v_1 , using the corresponding productions of P. Suppose that after scanning v_1 , the automaton is in state s_i . Rules (2) switch the derivation to the automaton $A^{(i)}$, starting thus to scan the word w. The word w is parsed by using rules (3) of the automaton $A^{(i)}$. If a final state is reached, that is if $w \in L$, rules (4) switch the derivation back to A. The fact that the index of the automaton was (i) allows us to remember the state s_i where we left the scanning of v_1v_2 . Rules (5) continue the scanning of v_2 . If a final state is reached, this means $v_1v_2 \in L$. (In this second part of the derivation for v_1v_2 , the states $s_{i,j}$, $0 \leq j \leq k$ are the states s_i in disguise; the second index j makes sure that the length of v_2 is at most k and that at least one word whas been encountered.)

From the above explanations it follows that g reaches a final state iff the input word u is of the form $v_1wv_2, v_1v_2 \in L, |v_2| \leq k, w \in L$. Consequently, $g(L) = \{v_1wv_2 | v_1v_2 \in L, |v_2| \leq k, w \in L\}$. \Box

3 *K*-deletion closure

Given words $u, v \in X^*$, the deletion of v from u is

$$u \to v = \{u_1 u_2 | u = u_1 v u_2\}.$$

The k-deletion operation puts some restrictions on the positions where the deletion can take place, being thus more deterministic than deletion, but more nondeterministic than the right quotient. More precisely, let $L_1, L_2 \subseteq X^*$ and let k be a non-negative integer. The k-deletion of L_2 from L_1 is the language $L_1 \rightarrow^k L_2 = \bigcup_{u \in L_1, v \in L_2} (u \rightarrow^k v)$ where

$$u \to^k v = \{u_1 u_2 | u = u_1 v u_2, |u_2| \le k\}.$$

If k = 0 we obtain the usual right quotient.

Let $L \subseteq X^*$ and let $k-Sub(L) = \{u \in X^* | xuy \in L, |y| \le k\}$. The elements of k-Sub(L) are called k-subwords. To the language L one can associate the language k - del(L) consisting of all words x with the following property: xis a k-subword of at least one word of L, and the k-deletion of x from any word of L containing x as a k-subword yields words belonging to L. Formally, k-del(L) is defined by:

$$k - del(L) = \{ x \in k - Sub(L) | \ \forall u \in L, u = u_1 x u_2, |u_2| \le k \ \Rightarrow \ u_1 u_2 \in L \}.$$

The condition that $x \in k-Sub(L)$ has been added because otherwise k-del(L) would contain irrelevant elements: words which are not k-subwords of any word of L and thus yield \emptyset as a result of the k-deletion from L.

Examples.

- $-k del(X^*) = X^*, \ k del(L_{ab}) = L_{ab};$
- $-k del(\{a^n b^n | n \ge 0\} = \{a^n b^n | n \ge 0\};$
- $-k del(ba^*b^m) = \emptyset$ if k < m and $k del(ba^*b^m) = a^*$ for $k \ge m$.

Proposition 3.1 Let $L \subseteq X^*$.

(i) If $x, y \in k-del(L)$ and $xy \in k-Sub(L)$, then $xy \in k-del(L)$.

(ii) If k-Sub(L) is a submonoid of X^* , then k-del(L) is a submonoid of X^* .

(iii) If L is a commutative language, then k-del(L) is also commutative.

Proof. (i) Let $x, y \in k-del(L)$ with $xy \in k-Sub(L)$. If $u = u_1xyu_2 \in L$, $|u_2| \leq k$, then $u_1yu_2 \in L$ and consequently $u_1u_2 \in L$. Therefore $xy \in k-del(L)$.

(ii) Immediate.

(iii) It is sufficient to show that $xuvy \in k-del(L)$ implies $xvuy \in k-del(L)$. Since L is commutative, $u_1xuvyu_2 \in L$ $|u_2| \leq k$ if and only if $u_1xvuyu_2 \in L$, $|u_2| \leq k$. If $u = u_1xuvyu_2$ we have that $u_1u_2 \in L$ and $u_1xvuyu_2 \in L$. This implies $xvuy \in k-del(L)$. \Box

Proposition 3.2 $k-del(L) = (L \rightleftharpoons^k L^c)^c \cap k - Sub(L).$

Proof. Let $x \in k-del(L)$. From the definition of k-del(L) it follows that $x \in k-Sub(L)$. Assume that $x \notin (L \rightleftharpoons^k L^c)^c$. This means there exist $u_1xu_2 \in L$, $|u_2| \leq k$ and $u_1u_2 \in L^c$ such that $x \in u_1xu_2 \rightleftharpoons^k u_1u_2$. We arrived at a contradiction as $x \in k-del(L)$, but $u_1xu_2 \in L$, $|u_2| \leq k$ and $u_1u_2 \notin L$.

For the other inclusion, let $x \in (L \rightleftharpoons^k L^c)^c \cap k - Sub(L)$. As $x \in k - Sub(L)$, if $x \notin k - del(L)$ there exist $u_1 x u_2 \in L$, $|u_2| \leq k$ such that $u_1 u_2 \notin L$. This further implies that $u_1 u_2 \in L^c$, that is, $x \in L \rightleftharpoons^k L^c$ – a contradiction with the initial assumption about x. \Box

A language L is called k-del-closed if $v \in L$ and $u_1vu_2 \in L$, $|u_2| \leq k$, implies $u_1u_2 \in L$. Remark that every k-del-closed language contains the identity 1.

Proposition 3.3 Let $L \subseteq X^*$ be a k-ins-closed language. L is k-del-closed if and only if $L = (L \rightarrow^k L)$.

Proof. (\Rightarrow) Let $u \in (L \to^k L)$. Then there exists $u_1, u_2 \in X^*$, $|u_2| \leq k$, and $v \in L$ such that $u = u_1 u_2$ and $u_1 v u_2 \in L$. Since L is k-del-closed, $u = u_1 u_2 \in L$. This means that $(L \to^k L) \subseteq L$.

Now let $u \in L$. Since L is k-ins-closed, $uu \in L$. Therefore $u \in (L \to^k L)$, i.e. $L \subseteq (L \to^k L)$. We can conclude that $L = (L \to^k L)$.

(⇐) Let $u_1vu_2 \in L$ for some $u_1, u_2 \in X^*$, $|u_2| \leq k$ and $v \in L$. Consider $u_1u_2 \in X^*$. Since $u_1u_2 \in (L \to^k L)$ and $(L \to^k L) = L$, $u_1u_2 \in L$. This means that L is k-del-closed. \Box

If L is a nonempty language and if KD_L is the family of all the k-del-closed languages L_i containing L, then the intersection $\bigcap_{L_i \in KD_L} L_i$ of all the k-delclosed languages containing L is also a k-del-closed language called the k-delclosure of L. The k-del-closure of L is the smallest k-del-closed language containing L.

We will now define a sequences of languages whose union is the k-del-closure of a given language L. Let:

$$KD_0(L) = L$$

$$KD_1(L) = KD_0(L) \rightarrow^k (KD_0(L) \cup \{1\})$$

$$KD_2(L) = KD_1(L) \rightarrow^k (KD_1(L) \cup \{1\})$$

$$\dots$$

$$KD_{j+1}(L) = KD_j(L) \rightarrow^k (KD_j(L) \cup \{1\})$$

$$\dots$$

Clearly $KD_j(L) \subseteq KD_{j+1}(L)$. Let

$$KD(L) = \bigcup_{j \ge 0} KD_j(L)$$

Proposition 3.4 KD(L) is the k-del-closure of the language L.

Proof. Clearly $L \subseteq KD(L)$.

Let $v \in KD(L)$ and $u_1vu_2 \in KD(L)$, $|u_2| \leq k$. Then $v \in KD_i(L)$ and $u_1vu_2 \in KD_j(L)$ for some integers $i, j \geq 0$. If $l = max\{i, j\}$, then $v \in KD_l(L)$ and $u_1vu_2 \in KD_l(L)$. This implies $u_1u_2 \in KD_{l+1}(L) \subseteq KD(L)$. Therefore KD(L) is a k-del-closed language containing L.

Let T be a k-del-closed language such that $L = KD_0(L) \subseteq T$. Since T is k-del-closed, if $KD_j(L) \subseteq T$ then $KD_{j+1}(L) \subseteq T$. Using induction, it follows then that $KD(L) \subseteq T$. \Box

Since, by [3], the family of regular languages is closed under k-deletion, it follows that if L is regular, then the languages $KD_j(L)$, $j \ge 0$, are also regular. However, it is an open question whether KD(L) is regular for any regular language $L \subseteq X^*$. If L is commutative, we have the following result.

Proposition 3.5 Let $L \subseteq X^*$ be a regular language. If L is commutative, then KD(L) is commutative and regular.

Proof. Let us show first that KD(L) is commutative. To this end, it is sufficient to show that $KD_{j+1}(L)$ is commutative if $KD_j(L)$ is commutative. Let $xuvy \in KD_{j+1}(L)$. By the definition of $KD_{j+1}(L)$, there exist $w \in KD_j(L)$, $z \in KD_j(L) \cup \{1\}$, such that $w \in (xuvy \leftarrow^k z)$. Since $KD_j(L)$ is commutative, $xuvyz \in KD_j(L)$ and $xvuyz \in KD_j(L)$. From the fact that $z, xvuyz \in KD_j(L)$ and the definition of $KD_{j+1}(L)$, it follows that $xvuy \in KD_{j+1}(L)$, i.e. $KD_{j+1}(L)$ is commutative.

We will show next that KD(L) is regular. To this aim, we show that $u \equiv v(P_{KD_j(L)})$ implies $u \equiv v(P_{KD_{j+1}(L)})$. Let $u \equiv v(P_{KD_j(L)})$ and let $xuy \in KD_{j+1}(L)$. By the definition of $KD_{j+1}(L)$, there exists $w \in KD_j(L)$,

 $z \in KD_j(L) \cup \{1\}$, such that $w \in (xuy \leftarrow^k z)$. Since $KD_j(L)$ is commutative, $xuyz \in KD_j(L)$. Hence $xvyz \in KD_j(L)$. From the fact that $z \in KD_j(L)$ and by the definition of $KD_{j+1}(L)$, it follows that $xvy \in KD_{j+1}(L)$. In the same way, $xvy \in KD_{j+1}(L)$ implies $xuy \in KD_{j+1}(L)$. Consequently, $u \equiv v(P_{KD_{j+1}(L)})$ holds. This means that the number of congruence classes of $P_{KD_{j+1}(L)}$ is smaller than or equal to that of $P_{KD_j(L)}$. Remark that

$$KD_0(L) \subseteq KD_1(L) \subseteq \ldots \subseteq KD_n(L) \subseteq KD_{n+1}(L) \ldots$$

It can be shown that $KD_t(L) = KD_{t+1}(L)$ for some $t, t \ge 1$. Thus, $KD(L) = KD_t(L)$ which implies that KD(L) is regular. \Box

4 Right k-unitary languages and k-prefix codes

Recall (see [3]) that a k-prefix code P is a nonempty language, $P \subseteq X^+$, such that $u, u_1 x u_2 \in P$ with $u = u_1 u_2$ and $|u_2| \leq k$ implies x = 1. A code is a prefix code iff it is a 0-prefix code and an outfix code iff it is a k-prefix code for $k \geq 0$.

If $P_k(X)$ is the family of all the k-prefix codes over X with $|X| \ge 2$, then we have the following strict hierarchy:

$$\cdots \subset P_{i+1}(X) \subset P_i(X) \subset \cdots \subset P_1(X) \subset P_0(X)$$

It is immediate that $P_{i+1}(X) \subseteq P_i(X)$. However $P_{i+1}(X) \subset P_i(X)$. Suppose that $X = \{a, b, \dots\}$ and let $T_i = \{a^n b^n | n \ge i+1\}$. Then T_i is a *i*-prefix code, but not a (i+1)-prefix code.

The relation ρ_k defined on X^* by:

$$u\rho_k v \Leftrightarrow v = u_1 x u_2, u = u_1 u_2, |u_2| \le k,$$

is reflexive, antisymmetric and left compatible. The *transitive closure* $\bar{\rho}_k$ of ρ_k is a left compatible partial order. The language P is a k-prefix code iff it is an anti-chain with respect to ρ_k (see [3]). Remark that if k = 0, ρ_0 is the usual prefix order.

Let $L \subseteq X^+$ be a nonempty language and let:

$$\Pr_k(L) = \{ u \in L | \ u = v_1 x v_2, v = v_1 v_2 \in L, |v_2| \le k, \Rightarrow x = 1 \}.$$

It is easy to see that $\operatorname{Prf}_k(L)$ is a k-prefix code and that $\operatorname{Prf}_k(L) = \{u \in L | v\rho_k u, v \in L \Rightarrow v = u\}$, i.e., $\operatorname{Prf}_k(L)$ is the set of words in L that are minimal with respect to the relation ρ_k or $\bar{\rho}_k$ (see [3]).

A subsemigroup $S \subseteq X^*$ is called *right* k-unitary if $u = u_1u_2, u_1xu_2 \in S$, $|u_2| \leq k$, implies $x \in S$. Clearly, $1 \in S$. Hence every right k-unitary subsemigroup is a submonoid, called *right* k-unitary submonoid.

Let $X = \{a, b\}$. Then a^* and L_{ab} are right k-unitary for every $k \ge 0$.

Proposition 4.1 Let $L \subseteq X^*$ be a nonempty language and let KU(L) (respectively KUK(L)) be the intersection of all the right k-unitary submonoids (k-submonoids) containing L. Then KU(L) (respectively KUK(L)) is a right k-unitary submonoid (k-submonoid) of X^* .

Proof. Immediate. \Box

Remark that KU(L) (resp. KUK(L)) is the smallest k-unitary submonoid (k-submonoid) of X^* containing L. The submonoid KU(L) is called the *right* k-unitary closure of L.

Let $U_k(L) = \{x \in X^* | \exists u = u_1 u_2 \in L, |u_2| \leq k \text{ with } u_1 x u_2 \in L\}$. Note that $U_k(L) = L \rightleftharpoons^k L$. If L is regular then, from a result of [3], it follows that $U_k(L)$ is also regular.

Define the sequence:

$$U_k^0(L) = L \cup \{1\}, \ U_k^1(L) = U_k(U_k^0(L)), \dots, U_k^{i+1}(L) = U_k(U_k^i(L)) \dots$$

Clearly, $U_k^i(L) \subseteq U_k^{i+1}(L)$.

Proposition 4.2 If $L \subseteq X^*$ is nonempty, then $KU(L) = \bigcup_{i>0} U_k^i(L)$.

Proof. Let $T = \bigcup_{i \ge 0} U_k^i(L)$. Clearly $L \subseteq T$. Let $u = u_1 u_2 \in T$ and $u_1 x u_2 \in T$ with $|u_2| \le k$. Then $u = u_1 u_2, u_1 x u_2 \in U_k^i(L)$ for some $i \ge 0$. This implies $x \in U_k^{i+1}(L) \subseteq T$. Hence T is right k-unitary and $KU(L) \subseteq \bigcup_{i \ge 0} U_k^i(L)$.

We show by induction that $\bigcup_{i\geq 0} U_k^i(L) \subseteq KU(L)$. For i=0, the assertion holds because $L \subseteq KU(L)$ and hence $U_k^0(L) \subseteq KU(L)$. Assume that $U_k^i(L) \subseteq KU(L)$ and let $x \in U_k^{i+1}(L)$. Then there exists $u \in U_k^i(L)$, $u = u_1u_2$ with $|u_2| \leq k$ such that $u_1xu_2 \in U_k^i(L)$. Hence:

$$u = u_1 u_2 \in KU(L), \ u_1 x u_2 \in KU(L).$$

Since KU(L) is right k-unitary, it follows that $x \in KU(L)$, which implies $U_k^{i+1}(L) \subseteq KU(L)$. Consequently, $KU(L) = \bigcup_{i>0} U_k^i(L)$. \Box

5 Right *m*-dense and *k*-ins-closed languages

A k-ins-closed language L is said to be minimal if $L' \subseteq L$, with L' a k-insclosed language, implies L' = L. The next result shows that a k-ins-closed language in X^+ cannot be minimal and hence other restrictions to the minimality are necessary in order to get positive results.

Proposition 5.1 There is no minimal k-ins-closed language in X^+ .

Proof. Suppose that $L \subseteq X^+$ is a minimal k-ins-closed language. Let $w \in L$ with minimal length m = |w| and let $L' = L \setminus \{w\}$. The language L' is not k-ins-closed, therefore there exist $u = u_1u_2 \in L'$, $v \in L'$, $|u_2| \leq k$, such that $u_1vu_2 \notin L'$. However, since $L' \subseteq L$ and L is k-ins-closed, we have that $u_1vu_2 \in L$. Therefore $u_1vu_2 = w$, which implies |w| > |u| - a contradiction. \Box

A language $L \subseteq X^*$ is called *right* m-dense if for any $w \in X^*$, there exists $x \in X^*$, $|x| \leq m$, such that $wx \in L$. A right m-dense and k-ins-closed language L is said to be minimal if it does not properly contain any right m-dense and k-ins-closed language. It has been shown in [2] that every right m-dense language contains a minimal one.

Proposition 5.2 Every right m-dense and k-ins-closed language L contains a minimal right m-dense and k-ins-closed language.

Proof. Let $D(L) = \{L_{\delta} | \delta \in \Delta\}$ be the family of the right *m*-dense and *k*-ins-closed languages L_{δ} contained in *L* and let $I = \{L_{\gamma} \mid \gamma \in \Gamma\}$ be an infinite descending chain of languages L_{γ} belonging to the family D(L):

$$L \supseteq \ldots \supseteq L_{\alpha} \supseteq \ldots \supseteq L_{\zeta} \supseteq \ldots$$

Let $L_0 = \bigcap_{\gamma \in \Gamma} L_{\gamma}$ and let X_m be the set of words of length $\leq m$.

Suppose first that L_0 is not right m-dense. Then there exists $u \in X^*$ such that $ux_j \notin L_0$ for all $x_j \in X_m$, that is, for each x_j there exists a $L_{\gamma_j} \in I$ such that $ux_j \notin L_{\gamma_j}$. If $L_{\phi} = \bigcap_{1 \leq j \leq n} L_{\gamma_j}$ where $n = |X_m|$, then $ux_j \notin L_{\phi}$ for every $x_j \in X_m$. Since I is a descending chain, $L_{\phi} \in I$ and L_{ϕ} is right m-dense, a contradiction. Hence L_0 is right m-dense and therefore $L_0 \neq \emptyset$. It is immediate that, if not empty, the intersection of k-ins-closed languages is a k-ins-closed language. Hence L_0 is also k-ins-closed.

As every infinite descending chain I in D(L) has a lower bound L_0 , the family D(L) is inductive. Consequently, according to Zorn's lemma, D(L) has at least a minimal element which is a minimal right m-dense and k-ins-closed language contained in L. \Box

Corollary 5.1 Let L be a regular right dense k-ins-closed language. Then L contains a minimal right m-dense and k-ins-closed language, m being a positive integer depending on L.

Proof. It follows from a result of [2] stating that every right dense regular language is m-dense for some positive integer. \Box

Proposition 5.3 Let L be a minimal right m-dense and k-ins-closed language. Then L contains a maximal prefix code P such that P^* is right m-dense.

Proof. Since L is k-ins-closed, L is a subsemigroup that is right m-dense. By a result of [2] this implies that L contains a maximal prefix code P with P^* right m-dense. \Box

Proposition 5.4 Let $L \subseteq X^*$. Then for every $k \ge 0$ and $m \ge 1$, there exists a right m-dense and k-ins-closed language L_{μ} such that:

(i) $L \subseteq L_{\mu}$. (ii) If L' is right m-dense and k-ins-closed with $L \subseteq L' \subseteq L_{\mu}$, then $L' = L_{\mu}$.

Proof. Let $I = \{L_{\gamma} \mid \gamma \in \Gamma\}$ be an infinite descending chain of right *m*-dense and *k*-ins-closed languages L_{γ} containing *L*:

$$\ldots \supseteq L_{\alpha} \supseteq \ldots \supseteq L_{\delta} \supseteq \ldots \supseteq L_{\delta}$$

This chain is not empty because it contains X^* . Let $L_0 = \bigcap_{\gamma \in \Gamma} L_{\gamma}$ and let X_m be the set of words of length $\leq m$.

As in the proof of Proposition 5.2, it can be shown that L_0 is right m-dense and k-ins-closed. If F(L) denotes the family of the right m-dense and k-ins-closed languages then, by applying the Zorn's lemma, we can deduce that F(L) has at least a minimal element L_{μ} satisfying the conditions (i) and (ii). \Box

References

- [1] M. Ito, L. Kari and G. Thierrin, Insertion and deletion closure of languages, To appear in *Theoretical Computer Science*.
- [2] M. Ito, G. Thierrin and S.S. Yu, Right k-dense languages, Semigroup Forum 48 (1994), 313-325.
- [3] L. Kari and G. Thierrin, K-catenation and applications: k-prefix codes, Journal of Information & Optimization Sciences, 16 (1995).
- [4] L. Kari, On insertion and deletion in formal languages, *Ph.D. Thesis*, University of Turku, 1991.
- [5] L.Kari, Language equations with invertible operations, *Theoretical Com*puter Science, 132 (1994), 129-150.
- [6] A.Salomaa, Formal Languages, Academic Press, New York, 1973.
- [7] H.J. Shyr, Free Monoids and Languages, Hon-Min Book Company, Taichung, Taiwan, 1991.