K-insertion and k-deletion closure of languages

Lila Kari and Gabriel Thierrin
Department of Mathematics
University of Western Ontario
N6A 5B7 London, Ontario
Canada
email: lkari@julian.uwo.ca

Abstract

The operation of k-insertion (k-deletion) is a generalization of the catenation (quotient) of words and languages. The k-insertion of w into $u=u_{1} u_{2}$ consists of all words $u_{1} w u_{2}$ where the length of u_{2} is at most k (k-deletion is performed in a analogous fashion). To a language L we associate the set $k-i n s(L)(k-\operatorname{del}(L))$ consisting of words with the following property: their k-insertion into (k-deletion from) any word of L yields words which also belong to L. We study properties of these languages and of languages which are k-insertion (k-deletion) closed.

[^0]
1 Introduction

The insertion and deletion operations have been introduced in [4] as natural generalizations of catenation, respectively right/left quotient: instead of adding (erasing) a word to (from) the right extremity of another, we insert (delete) it into (from) an arbitrary position.

Even though insertion generalizes catenation, catenation cannot be obtained as a particular case of it, as we cannot force the insertion to take place at the end of the word. The k-insertion (introduced in [3] under the name of k-catenation) provides the control needed to overcome this drawback. The k-insertion is thus more nondeterministic than catenation, but more restrictive than insertion. When k-inserting w into $u=u_{1} u_{2}$ we obtain all words $u_{1} w u_{2}$ where the length of u_{2} is at most k. Remark that now 0 -insertion is exactly the classical catenation. The operation of k-deletion (introduced in [3] under the name of k-quotient) is analogously defined: the deletion takes place in at most $k+1$ positions. The $0-$ deletion amounts thus to the right quotient.

Among other notions connected with insertion and deletion operations, in [1] the insertion and deletion closure of a language L have been defined and studied. This paper introduces similar notions related to the operations of k-insertion and k-deletion. Namely, to a language L we associate the set $k-\operatorname{ins}(L)$ (respectively $k-\operatorname{del}(L)$) consisting of the words with the property that, when k-inserted into (k-deleted from) any word of L, produce words still belonging to L.

Sections 2, 3 focus on these notions. Using the dual operation of dipolar k-deletion, both $k-\operatorname{ins}(L)$ and $k-\operatorname{del}(L)$ can be constructed. Moreover, procedures of constructing the k-insertion closure and k-deletion closure of a language are given.

When a language equals its k-insertion (k-deletion) closure, it is called k-ins-closed (resp. k-del-closed). If a language L is k-ins-closed, its words can either be obtained from other words of L by k-insertion, or can be "minimal" in this sense. The k-insertion base of L consists of all words which belong to the second category. We show that, if a language is regular, then its k-ins-base is also regular.

Section 4 deals with right k-unitary subsemigroups, that is subsemigroups S with the property that $u=u_{1} u_{2} \in S, u_{1} x u_{2} \in S,\left|u_{2}\right| \leq k$ implies $x \in S$. A method for obtaining the right k-unitary closure of a language is given.

Section 5 addresses the issue of minimal k-ins-closed languages. In general there is no minimal k-ins-closed language in X^{*}, therefore other restrictions on the minimality condition have to be added in order to obtain a positive result. Right m-density is such a condition: every right m-dense and k-ins-closed language L contains a minimal right m-dense and k-ins-closed language. Moreover, we show that every minimal right m-dense and k-ins-closed language contains a maximal prefix code P such that P^{*} is right m-dense.

In the sequel, X denotes a finite alphabet and X^{*} the free monoid generated
by X under the catenation operation. 1 is the empty word and, for a word $u \in X^{*},|u|$ denotes the length of w. A language L is called commutative if for every word $w \in L$, the language L contains all the words obtained from w by arbitrarily permuting its letters. For further undefined notions and notations the reader is referred to [6] and [7].

$2 K$-insertion closure

Given two words $u, v \in X^{*}$, the insertion of v into u is defined as $u \leftarrow v=$ $\left\{u_{1} v u_{2} \mid u=u_{1} u_{2}\right\}$. The operation of k-insertion restricts the generality of insertion by allowing words to be inserted only in at most $k+1$ positions. More precisely, let $L_{1}, L_{2} \subseteq X^{*}$ and let k be a non-negative integer. The k-insertion of L_{2} into L_{1} is the language $L_{1} \leftarrow^{k} L_{2}=\bigcup_{u \in L_{1}, v \in L_{2}}\left(u \leftarrow^{k} v\right)$ where

$$
u \leftarrow^{k} v=\left\{u_{1} v u_{2}\left|u=u_{1} u_{2},\left|u_{2}\right| \leq k\right\}\right.
$$

The 0 -insertion of L_{2} into L_{1} is the catenation $L_{1} L_{2}$.
Clearly $L_{1} \leftarrow^{k} L_{2} \subseteq L_{1} \leftarrow^{k+i} L_{2}$ and $L_{1} \leftarrow L_{2}=\bigcup_{k \geq 0} L_{1} \leftarrow^{k} L_{2}$ where $L_{1} \leftarrow L_{2}$ is the sequential insertion of L_{2} into L_{1}.

Examples. Let $X=\{a, b\}$.
(i) Let $L_{1}=a^{*}, L_{2}=\{b\}$. Then, $L_{1} \leftarrow^{k} L_{2}=a^{*} b \cup a^{*} b a \cup \ldots \cup a^{*} b a^{k}$. Note that $L_{1} \leftarrow^{k} L_{2} \subset L_{1} \leftarrow^{k+i} L_{2}$, i.e. the sequence of k-insertions is infinite (and strict).
(ii) Let $L_{1}=a^{*} b \cup a^{*} b^{2} \cup a^{*} b^{3}$ and $L_{2}=\left\{a^{+}\right\}$. Note that $L_{1} \leftarrow^{3} L_{2}=$ $L_{1} \leftarrow^{3+i} L_{2}=\left\{a^{*} b^{i} a^{+} \mid i=1,2,3\right\} \cup\left\{a^{+} b^{i} \mid i=1,2,3\right\} \cup a^{*} b a^{+} b \cup a^{*} b^{2} a^{+} b \cup$ $a^{*} b a^{+} b^{2}$. The sequence of k-insertions can be finite even with infinite languages.

Proposition 2.1 ([3]) The families of regular, context-free and context-sensitive languages are closed under k-insertion.

Let $L \subseteq X^{*}$. To the language L one can associate the set $k-\operatorname{ins}(L)$ consisting of all words with the following property: their k-insertion into any word of L yields a word belonging to L. Formally, $k-\operatorname{ins}(L)$ is defined by:

$$
k-i n s(L)=\left\{x \in X^{*}\left|\forall u \in L, u=u_{1} u_{2},\left|u_{2}\right| \leq k \Rightarrow u_{1} x u_{2} \in L\right\}\right.
$$

Examples. Let $X=\{a, b\}$. Then,
$-k-\operatorname{ins}\left(X^{*}\right)=X^{*}$ while $k-\operatorname{ins}\left(L_{a b}\right)=L_{a b}$, where $L_{a b}=\left\{w \in X^{*} \mid w\right.$ has the same number of a 's and b 's $\}$;

- if $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ then $k-i n s(L)=\{1\} ;$
- if $L_{1}=\left(a^{2}\right)^{*}, L_{2}=a L_{1}$ then $k-i n s\left(L_{1}\right)=L_{1}$ and $k-i n s\left(L_{2}\right)=L_{1} ;$
- if $L=b^{*} a b^{*}$ then $k-\operatorname{ins}(L)=b^{*}$;
- if $L=a X^{*} b$ then $0-i n s(L)=1-i n s(L)=X^{*} b$ and $k-i n s(L)=a X^{*} b$ for $k \geq 2$.

Proposition $2.2 k-\operatorname{ins}(L)$ is a submonoid of X^{*}. Moreover, if L is a commutative language, then $k-\operatorname{ins}(L)$ is also a commutative language.

Proof. Let $x, y \in k-\operatorname{ins}(L)$ and $u=u_{1} u_{2} \in L,\left|u_{2}\right| \leq k$. Then $u_{1} x u_{2} \in L$, $u_{1} x y u_{2} \in L$, hence $x y \in k-\operatorname{ins}(L)$. Since $1 \in k-\operatorname{ins}(L), k-\operatorname{ins}(L)$ is not empty and hence a submonoid of X^{*}.

For the second claim, it is sufficient to show that xuvy $\in k-\operatorname{ins}(L)$ implies xvuy $\in k-\operatorname{ins}(L)$. If $w \in L, w=w_{1} w_{2},\left|w_{2}\right| \leq k$, then $w_{1} x u v y w_{2} \in L$, hence $w_{1} x v u y w_{2} \in L$. Therefore $x v u y \in k-i n s(L)$.

In [1], in order to construct the language $\operatorname{ins}(L)$ from L, the dipolar deletion operation was used: $u \rightleftharpoons v=\left\{x \in X^{*} \mid u=v_{1} x v_{2}, v=v_{1} v_{2}\right\}$. In the case of k-insertion, for the same purpose, we will make use of a similar operation, the dipolar k-deletion. For u, v words over X, the dipolar k-deletion $u \rightleftharpoons^{k} v$ is defined by $u \rightleftharpoons^{k} v=\left\{x \in X^{*}\left|u=v_{1} x v_{2}, v=v_{1} v_{2},\left|v_{2}\right| \leq k\right\}\right.$. (The operation has been introduced in [3] under the name of k-deletion.) In other words, the dipolar k-deletion erases from u a prefix v_{1} of any length and a suffix v_{2} of length $\leq k$ whose catenation $v_{1} v_{2}$ equals v. The operation can be extended to languages in the natural fashion. If L_{1} and L_{2} are two languages, then the dipolar k-deletion of L_{2} from L_{1} is the language

$$
L_{1} \rightleftharpoons^{k} L_{2}=\bigcup_{u \in L_{1}, v \in L_{2}} u \rightleftharpoons^{k} v
$$

Note that the dipolar deletion of L_{2} from L_{1}, satisfies

$$
L_{1} \rightleftharpoons L_{2}=\bigcup_{k \geq 0} L_{1} \rightleftharpoons^{k} L_{2}
$$

We are now ready to construct the set $k-i n s(L)$ for a given language L.
Proposition $2.3 k-i n s(L)=\left(L^{c} \rightleftharpoons^{k} L\right)^{c}$.
Proof. Take $x \in k-i n s(L)$. Assume, for the sake of contradiction, that $x \notin$ $\left(L^{c} \rightleftharpoons^{k} L\right)^{c}$. Then $x \in\left(L^{c} \rightleftharpoons^{k} L\right)$, that is, there exist $u_{1} x u_{2} \in L^{c}, u_{1} u_{2} \in L$, $\left|u_{2}\right| \leq k$, such that $x \in u_{1} x u_{2} \rightleftharpoons^{k} u_{1} u_{2}$. We arrived at a contradiction, as $x \in$ $k-\operatorname{ins}(L)$ and $u_{1} u_{2} \in L,\left|u_{2}\right| \leq k$, but the k-insertion of x into $u_{1} u_{2}$ belongs to L^{c}.

Consider now a word $x \in\left(L^{c} \rightleftharpoons^{k} L\right)^{c}$. If $x \notin k$-ins (L), there exists $u_{1} u_{2} \in$ $L,\left|u_{2}\right| \leq k$ such that $u_{1} x u_{2} \notin L$. This further implies $u_{1} x u_{2} \in L^{c}$ and $x \in$ $L^{c} \rightleftharpoons^{k} L-$ a contradiction with the original assumptions about x.

Corollary 2.1 If the language L is regular, then $k-i n s(L)$ is regular and can be effectively constructed.

Proof. It has been proved in [3] that if L is regular, then $L \rightleftharpoons^{k} R$ is regular and moreover, the proof is constructive. Since L is regular, L^{c} is regular. This implies that $L^{c} \rightleftharpoons^{k} L$ is regular, hence $k-i n s(L)=\left(L^{c} \rightleftharpoons^{k} L\right)^{c}$ is regular.

A nonempty subset $S \subseteq X^{*}$ such that $u \in S, v \in S$, imply $u \leftarrow^{k} v \subseteq S$ is called a k-subsemigroup (see [3]). Clearly S is a subsemigroup of X^{*}. If S contains the identity, it is called a k-submonoid. A language L such that $L \subseteq k-\operatorname{ins}(L)$ is called k-ins-closed. It is easy to see that a language L is k-ins-closed iff it is a k-subsemigroup.

If nonempty, the intersection of k-ins-closed languages is a k-ins-closed language. Let L be a nonempty language and let $K I_{L}$ be the family of all the k-ins-closed languages containing L. This family is nonempty because $X^{*} \in K I_{L}$. The intersection

$$
K I(L)=\bigcap_{L_{i} \in K I_{L}} L_{i}
$$

of the languages belonging to the family $K I_{L}$ is clearly a k-ins-closed language containing L and it is called the k-ins-closure of L. The k-ins-closure of a language L is the smallest k-ins-closed language containing L.

Notice that a language L is k-ins-closed iff $L \leftarrow^{k} L \subseteq L$. Indeed, if $x \in L$, $u_{1} u_{2} \in L,\left|u_{2}\right| \leq k$, then, as $x \in L \subseteq k-i n s(L)$ we have that $u_{1} x u_{2} \in L$. For the other implication, take $x \in L$ and $u_{1} u_{2} \in L,\left|u_{2}\right| \leq k$. As $L \leftarrow{ }^{k} L \subseteq L$ we have that $u_{1} x u_{2} \in L$ which shows that $x \in k-\operatorname{ins}(L)$.

The k-insertion of order n of L_{2} into L_{1} is inductively defined by the equations:

$$
\begin{gathered}
L_{1} \leftarrow^{k(0)} L_{2}=L_{1} \\
\cdots \\
L_{1} \leftarrow^{k(i+1)} L_{2}=\left(L_{1} \leftarrow^{k(i)} L_{2}\right) \leftarrow^{k} L_{2}, i \geq 0 .
\end{gathered}
$$

The iterated sequential k-insertion of L_{2} into L_{1} is defined by:

$$
L_{1} \leftarrow^{k *} L_{2}=\bigcup_{n \geq 0}\left(L_{1} \leftarrow^{k(n)} L_{2}\right)
$$

Examples. (i) Let $L_{1}=a^{+} b a^{k}$ and $L_{2}=\{a\}$. Then: $L_{1} \leftarrow^{k *} L_{2}=a^{+} b\left(a^{*}\right) a^{k}$.
(ii) Let $L_{1}=b a^{+} b a^{k}$ and $L_{2}=\{a\}$. Then $L_{1} \leftarrow^{k *} L_{2}=b a^{+} b\left(a^{*}\right) a^{k}$.

Proposition 2.4 The k-insertion closure of a language L is $K I(L)=L \leftarrow^{k *}$ L.

Proof. " $K I(L) \subseteq L \leftarrow^{k *} L$ ". Obvious, as $L \leftarrow^{k *} L$ is k-ins-closed and L is included in $L \leftarrow^{k *} L$.
" $L \leftarrow^{k *} L \subseteq K I(L)$ " We show by induction on n that $L \leftarrow^{k(n)} L \subseteq K I(L)$. For $n=0$ the assertion holds, as $L \subseteq K I(L)$. Assume that $L \leftarrow^{k(n)} L \subseteq K I(L)$ and consider a word $u \in L \leftarrow^{k(n+1)} L=\left(L \leftarrow^{k(n)} L\right) \leftarrow^{k} L$. Then $u=u_{1} v u_{2}$, $\left|u_{2}\right| \leq k$, where $u_{1} u_{2} \in L \leftarrow^{k(n)} L$ and $v \in L$. As both $L \leftarrow^{k(n)} L$ and L are included in $K I(L)$ and $K I(L)$ is k-ins-closed, we deduce that $u \in K I(L)$.

The induction step, and therefore the requested equality are proved.

Let $L \subseteq X^{*}$ be a k-ins-closed language. As the result of the k-insertion of two words in L always belongs to L, we can divide the words of L into two categories: words that can be obtained as the result of k-insertions of other words of L, and words that cannot be obtained in this fashion.

Consider the set

$$
\begin{gathered}
K B(L)=\left\{u \in L \mid u \neq 1, u \notin\left((L \backslash\{1\}) \leftarrow^{k}(L \backslash\{1\})\right)\right\}= \\
L \backslash\left((L \backslash\{1\}) \leftarrow^{k+}(L \backslash\{1\})\right),
\end{gathered}
$$

i.e., $K B(L)$ consists of the words of L that are not the result of k-insertions of any words of L. Then $K B(L)$ is uniquely determined and $L \backslash\{1\}=\left(K B(L) \leftarrow^{k *}\right.$ $K B(L)) . K B(L)$ is called the k-ins-base of L.

The following result shows that if L is regular, its k-ins-base is also regular. The proof is based on the fact that one can construct a generalized sequential machine (for the definition see for example [6]) g such that $g(L)$ is the set of words in L that can be obtained as results of k-insertions.

Proposition 2.5 If L is a regular k-ins-closed language, then its k-ins-base $K B(L)$ is a regular language.

Proof. Let L be a regular k-ins-closed language. We can assume, without loss of generality, that L is 1 -free. Let $A=\left(X, S, s_{0}, F, P\right)$ be a finite deterministic automaton accepting L, where $S=\left\{s_{0}, s_{1}, \ldots s_{n}\right\}$ and the rules of P are of the form $s_{i} a \longrightarrow s_{j}, s_{i}, s_{j} \in S, a \in X$.

We will show that there exists a generalized sequential machine g such that $g(L)=L \backslash K B(L)$. As the family of regular languages is closed under gsm mappings and set difference, it will follow that $K B(L)$ is regular.

Notice first that, as L is k-ins-closed, $L \backslash K B(L)=\left\{u \in L \mid u=v_{1} w v_{2}, w \in\right.$ $\left.L, v_{1} v_{2} \in L,\left|v_{2}\right| \leq k\right\}$.

Consider now the gsm $g=\left(X, X, S^{\prime}, s_{0}, F^{\prime}, P^{\prime}\right)$ where

$$
\begin{align*}
S^{\prime} & =S \cup\left\{s_{j}^{(i)} \mid 0 \leq j \leq n, 0 \leq i \leq n\right\} \cup\left\{s_{i, j} \mid s_{i} \in F, 0 \leq j \leq k\right\} \\
F^{\prime} & =\left\{s_{i, j} \mid s_{i} \in F, 1 \leq j \leq k\right\} \\
P^{\prime} & =\left\{s_{i} a \longrightarrow a s_{m} \mid s_{i} a \longrightarrow s_{m} \in P\right\} \tag{1}\\
& \cup\left\{s_{i} a \longrightarrow a s_{j}^{(i)} \mid s_{0} a \longrightarrow s_{j} \in P\right\} \tag{2}\\
& \cup\left\{s_{j}^{(i)} a \longrightarrow a s_{m}^{(i)} \mid s_{j} a \longrightarrow s_{m} \in P, 0 \leq i \leq n\right\} \tag{3}\\
& \cup\left\{s_{j}^{(i)} a \longrightarrow a s_{i, 0} \mid s_{j} a \longrightarrow s_{l} \in P, s_{l} \in F\right\} \tag{4}\\
& \cup\left\{s_{i, j} a \longrightarrow a s_{m, j+1} \mid s_{i} a \longrightarrow s_{m} \in P, 1 \leq j \leq k-1\right\} \tag{5}
\end{align*}
$$

The idea of the proof is the following. We have constructed $\operatorname{card}(S)$ indexed copies of the automaton $A, A^{(i)}=\left(X, S^{(i)}, s_{0}^{(i)}, F^{(i)}, P^{(i)}\right), 1 \leq i \leq n$. Given a word $v_{1} w v_{2} \in L$, the gsm g works as follows.

The rules (1) scan the word v_{1}, using the corresponding productions of P. Suppose that after scanning v_{1}, the automaton is in state s_{i}. Rules (2) switch
the derivation to the automaton $A^{(i)}$, starting thus to scan the word w. The word w is parsed by using rules (3) of the automaton $A^{(i)}$. If a final state is reached, that is if $w \in L$, rules (4) switch the derivation back to A. The fact that the index of the automaton was (i) allows us to remember the state s_{i} where we left the scanning of $v_{1} v_{2}$. Rules (5) continue the scanning of v_{2}. If a final state is reached, this means $v_{1} v_{2} \in L$. (In this second part of the derivation for $v_{1} v_{2}$, the states $s_{i, j}, 0 \leq j \leq k$ are the states s_{i} in disguise; the second index j makes sure that the length of v_{2} is at most k and that at least one word w has been encountered.)

From the above explanations it follows that g reaches a final state iff the input word u is of the form $v_{1} w v_{2}, v_{1} v_{2} \in L,\left|v_{2}\right| \leq k, w \in L$. Consequently, $g(L)=\left\{v_{1} w v_{2}\left|v_{1} v_{2} \in L,\left|v_{2}\right| \leq k, w \in L\right\}\right.$.

$3 K$-deletion closure

Given words $u, v \in X^{*}$, the deletion of v from u is

$$
u \rightarrow v=\left\{u_{1} u_{2} \mid u=u_{1} v u_{2}\right\}
$$

The k-deletion operation puts some restrictions on the positions where the deletion can take place, being thus more deterministic than deletion, but more nondeterministic than the right quotient. More precisely, let $L_{1}, L_{2} \subseteq X^{*}$ and let k be a non-negative integer. The $k-$ deletion of L_{2} from L_{1} is the language $L_{1} \rightarrow^{k} L_{2}=\cup_{u \in L_{1}, v \in L_{2}}\left(u \rightarrow^{k} v\right)$ where

$$
u \rightarrow^{k} v=\left\{u_{1} u_{2}\left|u=u_{1} v u_{2},\left|u_{2}\right| \leq k\right\}\right.
$$

If $k=0$ we obtain the usual right quotient.
Let $L \subseteq X^{*}$ and let $k-\operatorname{Sub}(L)=\left\{u \in X^{*}|x u y \in L,|y| \leq k\}\right.$. The elements of $k-S u b(L)$ are called k-subwords. To the language L one can associate the language $k-\operatorname{del}(L)$ consisting of all words x with the following property: x is a k-subword of at least one word of L, and the k-deletion of x from any word of L containing x as a k-subword yields words belonging to L. Formally, $k-\operatorname{del}(L)$ is defined by:

$$
k-\operatorname{del}(L)=\left\{x \in k-S u b(L)\left|\forall u \in L, u=u_{1} x u_{2},\left|u_{2}\right| \leq k \Rightarrow u_{1} u_{2} \in L\right\} .\right.
$$

The condition that $x \in k-\operatorname{Sub}(L)$ has been added because otherwise $k-\operatorname{del}(L)$ would contain irrelevant elements: words which are not k-subwords of any word of L and thus yield \emptyset as a result of the k-deletion from L.

```
Examples.
\(-k-\operatorname{del}\left(X^{*}\right)=X^{*}, k-\operatorname{del}\left(L_{a b}\right)=L_{a b}\);
\(-k-\operatorname{del}\left(\left\{a^{n} b^{n} \mid n \geq 0\right\}=\left\{a^{n} b^{n} \mid n \geq 0\right\}\right.\);
\(-k-\operatorname{del}\left(b a^{*} b^{m}\right)=\emptyset\) if \(k<m\) and \(k-\operatorname{del}\left(b a^{*} b^{m}\right)=a^{*}\) for \(k \geq m\).
```

Proposition 3.1 Let $L \subseteq X^{*}$.
(i) If $x, y \in k-\operatorname{del}(L)$ and $x y \in k-\operatorname{Sub}(L)$, then $x y \in k-\operatorname{del}(L)$.
(ii) If $k-\operatorname{Sub}(L)$ is a submonoid of X^{*}, then $k-\operatorname{del}(L)$ is a submonoid of X^{*}.
(iii) If L is a commutative language, then $k-\operatorname{del}(L)$ is also commutative.

Proof. (i) Let $x, y \in k-\operatorname{del}(L)$ with $x y \in k-S u b(L)$. If $u=u_{1} x y u_{2} \in L,\left|u_{2}\right| \leq$ k, then $u_{1} y u_{2} \in L$ and consequently $u_{1} u_{2} \in L$. Therefore $x y \in k-\operatorname{del}(L)$.
(ii) Immediate.
(iii) It is sufficient to show that $x u v y \in k-\operatorname{del}(L)$ implies $x v u y \in k-\operatorname{del}(L)$. Since L is commutative, $u_{1} x u v y u_{2} \in L\left|u_{2}\right| \leq k$ if and only if $u_{1} x v u y u_{2} \in L$, $\left|u_{2}\right| \leq k$. If $u=u_{1} x u v y u_{2}$ we have that $u_{1} u_{2} \in L$ and $u_{1} x v u y u_{2} \in L$. This implies xvuy $\in k-\operatorname{del}(L)$.

Proposition $3.2 k-\operatorname{del}(L)=\left(L \rightleftharpoons^{k} L^{c}\right)^{c} \cap k-S u b(L)$.
Proof. Let $x \in k-\operatorname{del}(L)$. From the definition of $k-\operatorname{del}(L)$ it follows that $x \in$ $k-S u b(L)$. Assume that $x \notin\left(L \rightleftharpoons^{k} L^{c}\right)^{c}$. This means there exist $u_{1} x u_{2} \in L$, $\left|u_{2}\right| \leq k$ and $u_{1} u_{2} \in L^{c}$ such that $x \in u_{1} x u_{2} \rightleftharpoons^{k} u_{1} u_{2}$. We arrived at a contradiction as $x \in k-\operatorname{del}(L)$, but $u_{1} x u_{2} \in L,\left|u_{2}\right| \leq k$ and $u_{1} u_{2} \notin L$.

For the other inclusion, let $x \in\left(L \rightleftharpoons^{k} L^{c}\right)^{c} \cap k-S u b(L)$. As $x \in k-S u b(L)$, if $x \notin k-\operatorname{del}(L)$ there exist $u_{1} x u_{2} \in L,\left|u_{2}\right| \leq k$ such that $u_{1} u_{2} \notin L$. This further implies that $u_{1} u_{2} \in L^{c}$, that is, $x \in L \rightleftharpoons^{k} L^{c}-$ a contradiction with the initial assumption about x.

A language L is called $k-$ del-closed if $v \in L$ and $u_{1} v u_{2} \in L,\left|u_{2}\right| \leq k$, implies $u_{1} u_{2} \in L$. Remark that every k-del-closed language contains the identity 1 .

Proposition 3.3 Let $L \subseteq X^{*}$ be a k-ins-closed language. L is k-del-closed if and only if $L=\left(L \rightarrow^{k} L\right)$.

Proof. (\Rightarrow) Let $u \in\left(L \rightarrow^{k} L\right)$. Then there exists $u_{1}, u_{2} \in X^{*},\left|u_{2}\right| \leq k$, and $v \in L$ such that $u=u_{1} u_{2}$ and $u_{1} v u_{2} \in L$. Since L is k-del-closed, $u=u_{1} u_{2} \in L$. This means that $\left(L \rightarrow^{k} L\right) \subseteq L$.

Now let $u \in L$. Since L is k-ins-closed, $u u \in L$. Therefore $u \in\left(L \rightarrow^{k} L\right)$, i.e. $L \subseteq\left(L \rightarrow^{k} L\right)$. We can conclude that $L=\left(L \rightarrow^{k} L\right)$.
(\Leftarrow) Let $u_{1} v u_{2} \in L$ for some $u_{1}, u_{2} \in X^{*},\left|u_{2}\right| \leq k$ and $v \in L$. Consider $u_{1} u_{2} \in X^{*}$. Since $u_{1} u_{2} \in\left(L \rightarrow^{k} L\right)$ and $\left(L \rightarrow^{k} L\right)=L, u_{1} u_{2} \in L$. This means that L is $k-$ del-closed.

If L is a nonempty language and if $K D_{L}$ is the family of all the k-del-closed languages L_{i} containing L, then the intersection $\bigcap_{L_{i} \in K D_{L}} L_{i}$ of all the $k-\mathrm{del}-$ closed languages containing L is also a $k-$ del-closed language called the $k-\mathrm{del}-$ closure of L. The k-del-closure of L is the smallest k-del-closed language containing L.

We will now define a sequences of languages whose union is the k-del-closure of a given language L. Let:

$$
\begin{gathered}
K D_{0}(L)=L \\
K D_{1}(L)=K D_{0}(L) \rightarrow^{k}\left(K D_{0}(L) \cup\{1\}\right) \\
K D_{2}(L)=K D_{1}(L) \rightarrow^{k}\left(K D_{1}(L) \cup\{1\}\right) \\
\ldots \\
K D_{j+1}(L)=K D_{j}(L) \rightarrow^{k}\left(K D_{j}(L) \cup\{1\}\right)
\end{gathered}
$$

Clearly $K D_{j}(L) \subseteq K D_{j+1}(L)$. Let

$$
K D(L)=\bigcup_{j \geq 0} K D_{j}(L)
$$

Proposition 3.4 $K D(L)$ is the k-del-closure of the language L.
Proof. Clearly $L \subseteq K D(L)$.
Let $v \in K D(\bar{L})$ and $u_{1} v u_{2} \in K D(L),\left|u_{2}\right| \leq k$. Then $v \in K D_{i}(L)$ and $u_{1} v u_{2} \in K D_{j}(L)$ for some integers $i, j \geq 0$. If $l=\max \{i, j\}$, then $v \in K D_{l}(L)$ and $u_{1} v u_{2} \in K D_{l}(L)$. This implies $u_{1} u_{2} \in K D_{l+1}(L) \subseteq K D(L)$. Therefore $K D(L)$ is a $k-$ del-closed language containing L.

Let T be a k-del-closed language such that $L=K D_{0}(L) \subseteq T$. Since T is k-del-closed, if $K D_{j}(L) \subseteq T$ then $K D_{j+1}(L) \subseteq T$. Using induction, it follows then that $K D(L) \subseteq T$.

Since, by [3], the family of regular languages is closed under k-deletion, it follows that if L is regular, then the languages $K D_{j}(L), j \geq 0$, are also regular. However, it is an open question whether $K D(L)$ is regular for any regular language $L \subseteq X^{*}$. If L is commutative, we have the following result.

Proposition 3.5 Let $L \subseteq X^{*}$ be a regular language. If L is commutative, then $K D(L)$ is commutative and regular.

Proof. Let us show first that $K D(L)$ is commutative. To this end, it is sufficient to show that $K D_{j+1}(L)$ is commutative if $K D_{j}(L)$ is commutative. Let xuvy $\in K D_{j+1}(L)$. By the definition of $K D_{j+1}(L)$, there exist $w \in K D_{j}(L)$, $z \in K D_{j}(L) \cup\{1\}$, such that $w \in\left(x u v y \leftarrow^{k} z\right)$. Since $K D_{j}(L)$ is commutative, xuvyz $\in K D_{j}(L)$ and xvuyz $\in K D_{j}(L)$. From the fact that $z, x v u y z \in$ $K D_{j}(L)$ and the definition of $K D_{j+1}(L)$, it follows that xvuy $\in K D_{j+1}(L)$, i.e. $K D_{j+1}(L)$ is commutative.

We will show next that $K D(L)$ is regular. To this aim, we show that $u \equiv v\left(P_{K D_{j}(L)}\right)$ implies $u \equiv v\left(P_{K D_{j+1}(L)}\right)$. Let $u \equiv v\left(P_{K D_{j}(L)}\right)$ and let $x u y \in K D_{j+1}(L)$. By the definition of $K D_{j+1}(L)$, there exists $w \in K D_{j}(L)$,
$z \in K D_{j}(L) \cup\{1\}$, such that $w \in\left(x u y \leftarrow^{k} z\right)$. Since $K D_{j}(L)$ is commutative, $x u y z \in K D_{j}(L)$. Hence $x v y z \in K D_{j}(L)$. From the fact that $z \in K D_{j}(L)$ and by the definition of $K D_{j+1}(L)$, it follows that $x v y \in K D_{j+1}(L)$. In the same way, $x v y \in K D_{j+1}(L)$ implies xuy $\in K D_{j+1}(L)$. Consequently, $u \equiv v\left(P_{K D_{j+1}(L)}\right)$ holds. This means that the number of congruence classes of $P_{K D_{j+1}(L)}$ is smaller than or equal to that of $P_{K D_{j}(L)}$. Remark that

$$
K D_{0}(L) \subseteq K D_{1}(L) \subseteq \ldots \subseteq K D_{n}(L) \subseteq K D_{n+1}(L) \ldots
$$

It can be shown that $K D_{t}(L)=K D_{t+1}(L)$ for some $t, t \geq 1$. Thus, $K D(L)=$ $K D_{t}(L)$ which implies that $K D(L)$ is regular.

4 Right k-unitary languages and k-prefix codes

Recall (see [3]) that a k-prefix code P is a nonempty language, $P \subseteq X^{+}$, such that $u, u_{1} x u_{2} \in P$ with $u=u_{1} u_{2}$ and $\left|u_{2}\right| \leq k$ implies $x=1$. A code is a prefix code iff it is a 0 -prefix code and an outfix code iff it is a k-prefix code for $k \geq 0$.

If $P_{k}(X)$ is the family of all the k-prefix codes over X with $|X| \geq 2$, then we have the following strict hierarchy:

$$
\cdots \subset P_{i+1}(X) \subset P_{i}(X) \subset \cdots \subset P_{1}(X) \subset P_{0}(X)
$$

It is immediate that $P_{i+1}(X) \subseteq P_{i}(X)$. However $P_{i+1}(X) \subset P_{i}(X)$. Suppose that $X=\{a, b, \cdots\}$ and let $T_{i}=\left\{a^{n} b^{n} \mid n \geq i+1\right\}$. Then T_{i} is a i-prefix code, but not a $(i+1)$-prefix code.

The relation ρ_{k} defined on X^{*} by:

$$
u \rho_{k} v \Leftrightarrow v=u_{1} x u_{2}, u=u_{1} u_{2},\left|u_{2}\right| \leq k
$$

is reflexive, antisymmetric and left compatible. The transitive closure $\bar{\rho}_{k}$ of ρ_{k} is a left compatible partial order. The language P is a k-prefix code iff it is an anti-chain with respect to ρ_{k} (see [3]). Remark that if $k=0, \rho_{0}$ is the usual prefix order.

Let $L \subseteq X^{+}$be a nonempty language and let:

$$
\operatorname{Prf}_{k}(L)=\left\{u \in L\left|u=v_{1} x v_{2}, v=v_{1} v_{2} \in L,\left|v_{2}\right| \leq k, \Rightarrow x=1\right\}\right.
$$

It is easy to see that $\operatorname{Prf}_{k}(L)$ is a k-prefix code and that $\operatorname{Prf}_{k}(L)=\{u \in$ $\left.L \mid v \rho_{k} u, v \in L \Rightarrow v=u\right\}$, i.e., $\operatorname{Prf}_{k}(L)$ is the set of words in L that are minimal with respect to the relation ρ_{k} or $\bar{\rho}_{k}$ (see [3]).

A subsemigroup $S \subseteq X^{*}$ is called right k-unitary if $u=u_{1} u_{2}, u_{1} x u_{2} \in$ $S,\left|u_{2}\right| \leq k$, implies $x \in S$. Clearly, $1 \in S$. Hence every right k-unitary subsemigroup is a submonoid, called right k-unitary submonoid.

Let $X=\{a, b\}$. Then a^{*} and $L_{a b}$ are right k-unitary for every $k \geq 0$.

Proposition 4.1 Let $L \subseteq X^{*}$ be a nonempty language and let $K U(L)$ (respectively $K U K(L))$ be the intersection of all the right k-unitary submonoids (k-submonoids) containing L. Then $K U(L)$ (respectively $K U K(L)$) is a right k-unitary submonoid (k-submonoid) of X^{*}.

Proof. Immediate.
Remark that $K U(L)$ (resp. $K U K(L))$ is the smallest k-unitary submonoid (k-submonoid) of X^{*} containing L. The submonoid $K U(L)$ is called the right k-unitary closure of L.

Let $U_{k}(L)=\left\{x \in X^{*}\left|\exists u=u_{1} u_{2} \in L,\left|u_{2}\right| \leq k\right.\right.$ with $\left.u_{1} x u_{2} \in L\right\}$. Note that $U_{k}(L)=L \rightleftharpoons^{k} L$. If L is regular then, from a result of [3], it follows that $U_{k}(L)$ is also regular.

Define the sequence:

$$
U_{k}^{0}(L)=L \cup\{1\}, \quad U_{k}^{1}(L)=U_{k}\left(U_{k}^{0}(L)\right), \ldots, U_{k}^{i+1}(L)=U_{k}\left(U_{k}^{i}(L)\right) \ldots
$$

Clearly, $U_{k}^{i}(L) \subseteq U_{k}^{i+1}(L)$.
Proposition 4.2 If $L \subseteq X^{*}$ is nonempty, then $K U(L)=\bigcup_{i \geq 0} U_{k}^{i}(L)$.
Proof. Let $T=\bigcup_{i \geq 0} U_{k}^{i}(L)$. Clearly $L \subseteq T$. Let $u=u_{1} u_{2} \in T$ and $u_{1} x u_{2} \in T$ with $\left|u_{2}\right| \leq k$. Then $u=u_{1} u_{2}, u_{1} x u_{2} \in U_{k}^{i}(L)$ for some $i \geq 0$. This implies $x \in U_{k}^{i+1}(L) \subseteq T$. Hence T is right k-unitary and $K U(L) \subseteq \bigcup_{i \geq 0} U_{k}^{i}(L)$.

We show by induction that $\bigcup_{i \geq 0} U_{k}^{i}(L) \subseteq K U(L)$. For $i=0$, the assertion holds because $L \subseteq K U(L)$ and hence $U_{k}^{0}(L) \subseteq K U(L)$. Assume that $U_{k}^{i}(L) \subseteq$ $K U(L)$ and let $x \in U_{k}^{i+1}(L)$. Then there exists $u \in U_{k}^{i}(L), u=u_{1} u_{2}$ with $\left|u_{2}\right| \leq k$ such that $u_{1} x u_{2} \in U_{k}^{i}(L)$. Hence:

$$
u=u_{1} u_{2} \in K U(L), u_{1} x u_{2} \in K U(L)
$$

Since $K U(L)$ is right k-unitary, it follows that $x \in K U(L)$, which implies $U_{k}^{i+1}(L) \subseteq K U(L)$. Consequently, $K U(L)=\bigcup_{i \geq 0} U_{k}^{i}(L)$.

5 Right m-dense and k-ins-closed languages

A k-ins-closed language L is said to be minimal if $L^{\prime} \subseteq L$, with L^{\prime} a k-insclosed language, implies $L^{\prime}=L$. The next result shows that a k-ins-closed language in X^{+}cannot be minimal and hence other restrictions to the minimality are necessary in order to get positive results.

Proposition 5.1 There is no minimal k-ins-closed language in X^{+}.

Proof. Suppose that $L \subseteq X^{+}$is a minimal k-ins-closed language. Let $w \in L$ with minimal length $m=|w|$ and let $L^{\prime}=L \backslash\{w\}$. The language L^{\prime} is not k-ins-closed, therefore there exist $u=u_{1} u_{2} \in L^{\prime}, v \in L^{\prime},\left|u_{2}\right| \leq k$, such that $u_{1} v u_{2} \notin L^{\prime}$. However, since $L^{\prime} \subseteq L$ and L is k-ins-closed, we have that $u_{1} v u_{2} \in L$. Therefore $u_{1} v u_{2}=w$, which implies $|w|>|u|-$ a contradiction.

A language $L \subseteq X^{*}$ is called right m-dense if for any $w \in X^{*}$, there exists $x \in X^{*},|x| \leq m$, such that $w x \in L$. A right m-dense and k-ins-closed language L is said to be minimal if it does not properly contain any right m-dense and k-ins-closed language. It has been shown in [2] that every right m-dense language contains a minimal one.

Proposition 5.2 Every right m-dense and k-ins-closed language L contains a minimal right m-dense and k-ins-closed language.

Proof. Let $D(L)=\left\{L_{\delta} \mid \delta \in \Delta\right\}$ be the family of the right m-dense and k-ins-closed languages L_{δ} contained in L and let $I=\left\{L_{\gamma} \mid \gamma \in \Gamma\right\}$ be an infinite descending chain of languages L_{γ} belonging to the family $\mathrm{D}(\mathrm{L})$:

$$
L \supseteq \ldots \supseteq L_{\alpha} \supseteq \ldots \supseteq L_{\zeta} \supseteq \ldots
$$

Let $L_{0}=\cap_{\gamma \in \Gamma} L_{\gamma}$ and let X_{m} be the set of words of length $\leq m$.
Suppose first that L_{0} is not right m-dense. Then there exists $u \in X^{*}$ such that $u x_{j} \notin L_{0}$ for all $x_{j} \in X_{m}$, that is, for each x_{j} there exists a $L_{\gamma_{j}} \in I$ such that $u x_{j} \notin L_{\gamma_{j}}$. If $L_{\phi}=\cap_{1 \leq j \leq n} L_{\gamma_{j}}$ where $n=\left|X_{m}\right|$, then $u x_{j} \notin L_{\phi}$ for every $x_{j} \in X_{m}$. Since I is a descending chain, $L_{\phi} \in I$ and L_{ϕ} is right m-dense, a contradiction. Hence L_{0} is right m-dense and therefore $L_{0} \neq \emptyset$. It is immediate that, if not empty, the intersection of k-ins-closed languages is a k-ins-closed language. Hence L_{0} is also k-ins-closed.

As every infinite descending chain I in $D(L)$ has a lower bound L_{0}, the family $D(L)$ is inductive. Consequently, according to Zorn's lemma, $D(L)$ has at least a minimal element which is a minimal right m-dense and k-ins-closed language contained in L.

Corollary 5.1 Let L be a regular right dense k-ins-closed language. Then L contains a minimal right m-dense and k-ins-closed language, m being a positive integer depending on L.

Proof. It follows from a result of [2] stating that every right dense regular language is m-dense for some positive integer.

Proposition 5.3 Let L be a minimal right m-dense and k-ins-closed language. Then L contains a maximal prefix code P such that P^{*} is right m-dense.

Proof. Since L is k-ins-closed, L is a subsemigroup that is right m-dense. By a result of [2] this implies that L contains a maximal prefix code P with P^{*} right m-dense.

Proposition 5.4 Let $L \subseteq X^{*}$. Then for every $k \geq 0$ and $m \geq 1$, there exists a right m-dense and k-ins-closed language L_{μ} such that:
(i) $L \subseteq L_{\mu}$.
(ii) If L^{\prime} is right m-dense and k-ins-closed with $L \subseteq L^{\prime} \subseteq L_{\mu}$, then $L^{\prime}=L_{\mu}$.

Proof. Let $I=\left\{L_{\gamma} \mid \gamma \in \Gamma\right\}$ be an infinite descending chain of right m-dense and k-ins-closed languages L_{γ} containing L :

$$
\ldots \supseteq L_{\alpha} \supseteq \ldots \supseteq L_{\delta} \supseteq \ldots \supseteq L
$$

This chain is not empty because it contains X^{*}. Let $L_{0}=\cap_{\gamma \in \Gamma} L_{\gamma}$ and let X_{m} be the set of words of length $\leq m$.

As in the proof of Proposition 5.2, it can be shown that L_{0} is right m-dense and k-ins-closed. If $F(L)$ denotes the family of the right m-dense and k-ins-closed languages then, by applying the Zorn's lemma, we can deduce that $F(L)$ has at least a minimal element L_{μ} satisfying the conditions (i) and (ii).

References

[1] M. Ito, L. Kari and G. Thierrin, Insertion and deletion closure of languages, To appear in Theoretical Computer Science.
[2] M. Ito, G. Thierrin and S.S. Yu, Right k-dense languages, Semigroup Forum 48 (1994), 313-325.
[3] L. Kari and G. Thierrin, K-catenation and applications: k-prefix codes, Journal of Information $\varepsilon \mathcal{G}$ Optimization Sciences, 16 (1995).
[4] L. Kari, On insertion and deletion in formal languages, Ph.D. Thesis, University of Turku, 1991.
[5] L.Kari, Language equations with invertible operations, Theoretical Computer Science, 132 (1994), 129-150.
[6] A.Salomaa, Formal Languages, Academic Press, New York, 1973.
[7] H.J. Shyr, Free Monoids and Languages, Hon-Min Book Company, Taichung, Taiwan, 1991.

[^0]: ${ }^{1}$ Mathematics Subject Classification. Primary 68Q45; Secondary 20M35.
 ${ }^{2}$ This research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada
 ${ }^{3}$ All correspondence to Lila Kari.

