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Abstract

The operation of k−insertion (k−deletion) is a generalization of the
catenation (quotient) of words and languages. The k−insertion of w into
u = u1u2 consists of all words u1wu2 where the length of u2 is at most
k (k−deletion is performed in a analogous fashion). To a language L

we associate the set k−ins(L) (k−del(L)) consisting of words with the
following property: their k−insertion into (k−deletion from) any word
of L yields words which also belong to L. We study properties of these
languages and of languages which are k−insertion (k−deletion) closed.
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1 Introduction

The insertion and deletion operations have been introduced in [4] as natural
generalizations of catenation, respectively right/left quotient: instead of adding
(erasing) a word to (from) the right extremity of another, we insert (delete) it
into (from) an arbitrary position.

Even though insertion generalizes catenation, catenation cannot be obtained
as a particular case of it, as we cannot force the insertion to take place at
the end of the word. The k−insertion (introduced in [3] under the name of
k−catenation) provides the control needed to overcome this drawback. The
k−insertion is thus more nondeterministic than catenation, but more restrictive
than insertion. When k−inserting w into u = u1u2 we obtain all words u1wu2

where the length of u2 is at most k. Remark that now 0−insertion is exactly
the classical catenation. The operation of k−deletion (introduced in [3] under
the name of k−quotient) is analogously defined: the deletion takes place in at
most k + 1 positions. The 0−deletion amounts thus to the right quotient.

Among other notions connected with insertion and deletion operations, in
[1] the insertion and deletion closure of a language L have been defined and
studied. This paper introduces similar notions related to the operations of
k−insertion and k−deletion. Namely, to a language L we associate the set
k−ins(L) (respectively k−del(L)) consisting of the words with the property
that, when k−inserted into (k−deleted from) any word of L, produce words
still belonging to L.

Sections 2, 3 focus on these notions. Using the dual operation of dipolar
k−deletion, both k−ins(L) and k−del(L) can be constructed. Moreover, pro-
cedures of constructing the k−insertion closure and k−deletion closure of a
language are given.

When a language equals its k−insertion (k−deletion) closure, it is called
k−ins−closed (resp. k−del−closed). If a language L is k−ins−closed, its words
can either be obtained from other words of L by k−insertion, or can be ”min-
imal” in this sense. The k−insertion base of L consists of all words which
belong to the second category. We show that, if a language is regular, then its
k−ins−base is also regular.

Section 4 deals with right k−unitary subsemigroups, that is subsemigroups
S with the property that u = u1u2 ∈ S, u1xu2 ∈ S, |u2| ≤ k implies x ∈ S. A
method for obtaining the right k−unitary closure of a language is given.

Section 5 addresses the issue of minimal k−ins−closed languages. In general
there is no minimal k−ins−closed language in X∗, therefore other restrictions
on the minimality condition have to be added in order to obtain a positive result.
Right m−density is such a condition: every right m−dense and k−ins−closed
language L contains a minimal right m−dense and k−ins−closed language.
Moreover, we show that every minimal right m−dense and k−ins−closed lan-
guage contains a maximal prefix code P such that P ∗ is right m−dense.

In the sequel, X denotes a finite alphabet and X∗ the free monoid generated

2



by X under the catenation operation. 1 is the empty word and, for a word
u ∈ X∗, |u| denotes the length of w. A language L is called commutative if for
every word w ∈ L, the language L contains all the words obtained from w by
arbitrarily permuting its letters. For further undefined notions and notations
the reader is referred to [6] and [7].

2 K−insertion closure

Given two words u, v ∈ X∗, the insertion of v into u is defined as u ← v =
{u1vu2| u = u1u2}. The operation of k−insertion restricts the generality of
insertion by allowing words to be inserted only in at most k +1 positions. More
precisely, let L1, L2 ⊆ X∗ and let k be a non-negative integer. The k−insertion
of L2 into L1 is the language L1 ←k L2 =

⋃
u∈L1,v∈L2

(u←k v) where

u←k v = {u1vu2 | u = u1u2, |u2| ≤ k}

The 0−insertion of L2 into L1 is the catenation L1L2.
Clearly L1 ←k L2 ⊆ L1 ←k+i L2 and L1 ← L2 =

⋃
k≥0 L1 ←k L2 where

L1 ← L2 is the sequential insertion of L2 into L1.
Examples. Let X = {a, b}.
(i) Let L1 = a∗, L2 = {b}. Then, L1 ←k L2 = a∗b∪a∗ba∪ . . .∪a∗bak. Note

that L1 ←k L2 ⊂ L1 ←k+i L2, i.e. the sequence of k−insertions is infinite (and
strict).

(ii) Let L1 = a∗b ∪ a∗b2 ∪ a∗b3 and L2 = {a+}. Note that L1 ←3 L2 =
L1 ←

3+i L2 = {a∗bia+| i = 1, 2, 3}∪ {a+bi| i = 1, 2, 3}∪ a∗ba+b∪ a∗b2a+b∪
a∗ba+b2. The sequence of k−insertions can be finite even with infinite languages.

Proposition 2.1 ([3]) The families of regular, context-free and context-sensitive
languages are closed under k−insertion.

Let L ⊆ X∗. To the language L one can associate the set k−ins(L) consist-
ing of all words with the following property: their k−insertion into any word of
L yields a word belonging to L. Formally, k−ins(L) is defined by:

k − ins(L) = {x ∈ X∗|∀u ∈ L, u = u1u2, |u2| ≤ k ⇒ u1xu2 ∈ L}.

Examples. Let X = {a, b}. Then,
– k−ins(X∗) = X∗ while k−ins(Lab) = Lab, where Lab = {w ∈ X∗| w has

the same number of a’s and b’s};
– if L = {anbn|n ≥ 0} then k−ins(L) = {1};
– if L1 = (a2)∗, L2 = aL1 then k−ins(L1) = L1 and k−ins(L2) = L1;
– if L = b∗ab∗ then k−ins(L) = b∗;
– if L = aX∗b then 0−ins(L) = 1−ins(L) = X∗b and k−ins(L) = aX∗b for

k ≥ 2.
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Proposition 2.2 k−ins(L) is a submonoid of X∗. Moreover, if L is a commu-
tative language, then k−ins(L) is also a commutative language.

Proof. Let x, y ∈ k−ins(L) and u = u1u2 ∈ L, |u2| ≤ k . Then u1xu2 ∈ L,
u1xyu2 ∈ L, hence xy ∈ k−ins(L). Since 1 ∈ k−ins(L), k−ins(L) is not empty
and hence a submonoid of X∗.

For the second claim, it is sufficient to show that xuvy ∈ k−ins(L) implies
xvuy ∈ k−ins(L). If w ∈ L, w = w1w2 , |w2| ≤ k, then w1xuvyw2 ∈ L, hence
w1xvuyw2 ∈ L. Therefore xvuy ∈ k−ins(L). 2

In [1], in order to construct the language ins(L) from L, the dipolar deletion
operation was used: u ⇀↽ v = {x ∈ X∗| u = v1xv2, v = v1v2}. In the case of
k−insertion, for the same purpose, we will make use of a similar operation, the
dipolar k−deletion. For u, v words over X , the dipolar k−deletion u ⇀↽k v is
defined by u ⇀↽k v = {x ∈ X∗| u = v1xv2, v = v1v2, |v2| ≤ k}. (The operation
has been introduced in [3] under the name of k−deletion.) In other words, the
dipolar k−deletion erases from u a prefix v1 of any length and a suffix v2 of
length ≤ k whose catenation v1v2 equals v. The operation can be extended
to languages in the natural fashion. If L1 and L2 are two languages, then the
dipolar k−deletion of L2 from L1 is the language

L1 ⇀↽k L2 =
⋃

u∈L1,v∈L2

u ⇀↽k v

Note that the dipolar deletion of L2 from L1, satisfies

L1 ⇀↽ L2 =
⋃

k≥0 L1 ⇀↽k L2 .

We are now ready to construct the set k−ins(L) for a given language L.

Proposition 2.3 k−ins(L) = (Lc ⇀↽k L)c.

Proof. Take x ∈ k−ins(L). Assume, for the sake of contradiction, that x 6∈
(Lc ⇀↽k L)c. Then x ∈ (Lc ⇀↽k L), that is, there exist u1xu2 ∈ Lc, u1u2 ∈ L,
|u2| ≤ k, such that x ∈ u1xu2 ⇀↽k u1u2. We arrived at a contradiction, as x ∈
k−ins(L) and u1u2 ∈ L, |u2| ≤ k, but the k−insertion of x into u1u2 belongs
to Lc.

Consider now a word x ∈ (Lc ⇀↽k L)c. If x 6∈ k−ins(L), there exists u1u2 ∈
L, |u2| ≤ k such that u1xu2 6∈ L. This further implies u1xu2 ∈ Lc and x ∈
Lc ⇀↽k L – a contradiction with the original assumptions about x. 2

Corollary 2.1 If the language L is regular, then k−ins(L) is regular and can
be effectively constructed.

Proof. It has been proved in [3] that if L is regular, then L ⇀↽k R is regular
and moreover, the proof is constructive. Since L is regular, Lc is regular. This
implies that Lc ⇀↽k L is regular, hence k − ins(L) = (Lc ⇀↽k L)c is regular. 2
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A nonempty subset S ⊆ X∗ such that u ∈ S, v ∈ S, imply u ←k v ⊆ S
is called a k−subsemigroup (see [3]). Clearly S is a subsemigroup of X∗. If
S contains the identity, it is called a k−submonoid. A language L such that
L ⊆ k−ins(L) is called k−ins−closed. It is easy to see that a language L is
k−ins−closed iff it is a k−subsemigroup.

If nonempty, the intersection of k−ins−closed languages is a k−ins−closed
language. Let L be a nonempty language and let KIL be the family of all
the k−ins−closed languages containing L. This family is nonempty because
X∗ ∈ KIL. The intersection

KI(L) =
⋂

Li∈KIL

Li

of the languages belonging to the family KIL is clearly a k−ins−closed language
containing L and it is called the k−ins−closure of L. The k−ins−closure of a
language L is the smallest k−ins−closed language containing L.

Notice that a language L is k−ins−closed iff L←kL ⊆ L. Indeed, if x ∈ L,
u1u2 ∈ L, |u2| ≤ k, then, as x ∈ L ⊆ k−ins(L) we have that u1xu2 ∈ L. For
the other implication, take x ∈ L and u1u2 ∈ L, |u2| ≤ k. As L←kL ⊆ L we
have that u1xu2 ∈ L which shows that x ∈ k−ins(L).

The k−insertion of order n of L2 into L1 is inductively defined by the equa-
tions:

L1 ←
k(0) L2 = L1

· · ·

L1 ←
k(i+1) L2 = (L1 ←

k(i) L2)←
k L2, i ≥ 0.

The iterated sequential k−insertion of L2 into L1 is defined by:

L1 ←
k∗ L2 =

⋃

n≥0

(L1 ←
k(n) L2).

Examples. (i) Let L1 = a+bak and L2 = {a}. Then: L1 ←k∗ L2 = a+b(a∗)ak.
(ii) Let L1 = ba+bak and L2 = {a}. Then L1 ←k∗ L2 = ba+b(a∗)ak.

Proposition 2.4 The k−insertion closure of a language L is KI(L) = L←k∗

L.

Proof. ”KI(L) ⊆ L ←k∗ L”. Obvious, as L ←k∗ L is k−ins−closed and L is
included in L←k∗ L.

”L←k∗ L ⊆ KI(L)” We show by induction on n that L←k(n) L ⊆ KI(L).
For n = 0 the assertion holds, as L ⊆ KI(L). Assume that L←k(n) L ⊆ KI(L)
and consider a word u ∈ L ←k(n+1) L = (L ←k(n) L)←k L. Then u = u1vu2,
|u2| ≤ k, where u1u2 ∈ L ←k(n) L and v ∈ L. As both L ←k(n) L and L are
included in KI(L) and KI(L) is k−ins−closed, we deduce that u ∈ KI(L).

The induction step, and therefore the requested equality are proved. 2
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Let L ⊆ X∗ be a k−ins−closed language. As the result of the k−insertion
of two words in L always belongs to L, we can divide the words of L into two
categories: words that can be obtained as the result of k−insertions of other
words of L, and words that cannot be obtained in this fashion.

Consider the set

KB(L) = {u ∈ L| u 6= 1, u 6∈ ((L\{1})←k (L\{1}))} =

L\((L\{1})←k+ (L\{1})),

i.e., KB(L) consists of the words of L that are not the result of k−insertions of
any words of L. Then KB(L) is uniquely determined and L\{1} = (KB(L)←k∗

KB(L)). KB(L) is called the k−ins−base of L.
The following result shows that if L is regular, its k−ins−base is also regular.

The proof is based on the fact that one can construct a generalized sequential
machine (for the definition see for example [6]) g such that g(L) is the set of
words in L that can be obtained as results of k−insertions.

Proposition 2.5 If L is a regular k−ins−closed language, then its k−ins−base
KB(L) is a regular language.

Proof. Let L be a regular k−ins−closed language. We can assume, without loss
of generality, that L is 1-free. Let A = (X, S, s0, F, P ) be a finite deterministic
automaton accepting L, where S = {s0, s1, . . . sn} and the rules of P are of the
form sia−→sj , si, sj ∈ S, a ∈ X .

We will show that there exists a generalized sequential machine g such that
g(L) = L\KB(L). As the family of regular languages is closed under gsm
mappings and set difference, it will follow that KB(L) is regular.

Notice first that, as L is k−ins−closed, L\KB(L) = {u ∈ L| u = v1wv2, w ∈
L, v1v2 ∈ L, |v2| ≤ k}.

Consider now the gsm g = (X, X, S′, s0, F
′, P ′) where

S′ = S ∪ {s
(i)
j | 0 ≤ j ≤ n, 0 ≤ i ≤ n} ∪ {si,j| si ∈ F, 0 ≤ j ≤ k}

F ′ = {si,j| si ∈ F, 1 ≤ j ≤ k}
P ′ = {sia−→asm| sia−→sm ∈ P} (1)

∪ {sia−→as
(i)
j | s0a−→sj ∈ P} (2)

∪ {s
(i)
j a−→as

(i)
m | sja−→sm ∈ P, 0 ≤ i ≤ n} (3)

∪ {s
(i)
j a−→asi,0| sja−→sl ∈ P, sl ∈ F} (4)

∪ {si,ja−→asm,j+1| sia−→sm ∈ P, 1 ≤ j ≤ k − 1} (5)

The idea of the proof is the following. We have constructed card(S) indexed

copies of the automaton A, A(i) = (X, S(i), s
(i)
0 , F (i), P (i)), 1 ≤ i ≤ n. Given a

word v1wv2 ∈ L, the gsm g works as follows.
The rules (1) scan the word v1, using the corresponding productions of P .

Suppose that after scanning v1, the automaton is in state si. Rules (2) switch
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the derivation to the automaton A(i), starting thus to scan the word w. The
word w is parsed by using rules (3) of the automaton A(i). If a final state is
reached, that is if w ∈ L, rules (4) switch the derivation back to A. The fact
that the index of the automaton was (i) allows us to remember the state si

where we left the scanning of v1v2. Rules (5) continue the scanning of v2. If a
final state is reached, this means v1v2 ∈ L. (In this second part of the derivation
for v1v2, the states si,j , 0 ≤ j ≤ k are the states si in disguise; the second index
j makes sure that the length of v2 is at most k and that at least one word w
has been encountered.)

From the above explanations it follows that g reaches a final state iff the
input word u is of the form v1wv2, v1v2 ∈ L, |v2| ≤ k, w ∈ L. Consequently,
g(L) = {v1wv2| v1v2 ∈ L, |v2| ≤ k, w ∈ L}. 2

3 K−deletion closure

Given words u, v ∈ X∗, the deletion of v from u is

u→ v = {u1u2| u = u1vu2}.

The k−deletion operation puts some restrictions on the positions where the
deletion can take place, being thus more deterministic than deletion, but more
nondeterministic than the right quotient. More precisely, let L1, L2 ⊆ X∗ and
let k be a non-negative integer. The k−deletion of L2 from L1 is the language
L1 →k L2 = ∪u∈L1,v∈L2

(u→k v) where

u→k v = {u1u2| u = u1vu2, |u2| ≤ k}.

If k = 0 we obtain the usual right quotient.
Let L ⊆ X∗ and let k−Sub(L) = {u ∈ X∗| xuy ∈ L, |y| ≤ k}. The elements

of k−Sub(L) are called k−subwords. To the language L one can associate the
language k − del(L) consisting of all words x with the following property: x
is a k−subword of at least one word of L, and the k−deletion of x from any
word of L containing x as a k−subword yields words belonging to L. Formally,
k−del(L) is defined by:

k − del(L) = {x ∈ k − Sub(L)| ∀u ∈ L, u = u1xu2, |u2| ≤ k ⇒ u1u2 ∈ L}.

The condition that x ∈ k−Sub(L) has been added because otherwise k−del(L)
would contain irrelevant elements: words which are not k−subwords of any word
of L and thus yield ∅ as a result of the k−deletion from L.

Examples.
– k−del(X∗) = X∗, k−del(Lab) = Lab;
– k−del({anbn| n ≥ 0} = {anbn| n ≥ 0};
– k−del(ba∗bm) = ∅ if k < m and k−del(ba∗bm) = a∗ for k ≥ m.
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Proposition 3.1 Let L ⊆ X∗.
(i) If x, y ∈ k−del(L) and xy ∈ k−Sub(L), then xy ∈ k− del(L).
(ii) If k−Sub(L) is a submonoid of X∗, then k−del(L) is a submonoid of

X∗.
(iii) If L is a commutative language, then k−del(L) is also commutative.

Proof. (i) Let x, y ∈ k−del(L) with xy ∈ k− Sub(L). If u = u1xyu2 ∈ L, |u2| ≤
k, then u1yu2 ∈ L and consequently u1u2 ∈ L. Therefore xy ∈ k−del(L).

(ii) Immediate.
(iii) It is sufficient to show that xuvy ∈ k−del(L) implies xvuy ∈ k−del(L).

Since L is commutative, u1xuvyu2 ∈ L |u2| ≤ k if and only if u1xvuyu2 ∈ L,
|u2| ≤ k. If u = u1xuvyu2 we have that u1u2 ∈ L and u1xvuyu2 ∈ L . This
implies xvuy ∈ k−del(L). 2

Proposition 3.2 k−del(L) = (L ⇀↽k Lc)c ∩ k − Sub(L).

Proof. Let x ∈ k−del(L). From the definition of k−del(L) it follows that x ∈
k − Sub(L). Assume that x 6∈ (L ⇀↽k Lc)c. This means there exist u1xu2 ∈ L,
|u2| ≤ k and u1u2 ∈ Lc such that x ∈ u1xu2 ⇀↽k u1u2. We arrived at a
contradiction as x ∈ k−del(L), but u1xu2 ∈ L, |u2| ≤ k and u1u2 6∈ L.

For the other inclusion, let x ∈ (L ⇀↽k Lc)c∩k−Sub(L). As x ∈ k−Sub(L),
if x 6∈ k−del(L) there exist u1xu2 ∈ L, |u2| ≤ k such that u1u2 6∈ L. This
further implies that u1u2 ∈ Lc, that is, x ∈ L ⇀↽k Lc – a contradiction with the
initial assumption about x. 2

A language L is called k−del−closed if v ∈ L and u1vu2 ∈ L, |u2| ≤ k,
implies u1u2 ∈ L. Remark that every k−del−closed language contains the
identity 1.

Proposition 3.3 Let L ⊆ X∗ be a k−ins−closed language. L is k−del−closed
if and only if L = (L→k L).

Proof. (⇒) Let u ∈ (L →k L). Then there exists u1, u2 ∈ X∗, |u2| ≤ k,
and v ∈ L such that u = u1u2 and u1vu2 ∈ L. Since L is k−del−closed,
u = u1u2 ∈ L. This means that (L→k L) ⊆ L.

Now let u ∈ L. Since L is k−ins−closed, uu ∈ L. Therefore u ∈ (L →k L),
i.e. L ⊆ (L→k L). We can conclude that L = (L→k L).

(⇐) Let u1vu2 ∈ L for some u1, u2 ∈ X∗, |u2| ≤ k and v ∈ L. Consider
u1u2 ∈ X∗. Since u1u2 ∈ (L →k L) and (L →k L) = L, u1u2 ∈ L. This means
that L is k−del−closed. 2

If L is a nonempty language and if KDL is the family of all the k−del−closed
languages Li containing L, then the intersection

⋂
Li∈KDL

Li of all the k−del−
closed languages containing L is also a k−del−closed language called the k−del−
closure of L. The k−del−closure of L is the smallest k−del−closed language
containing L.

8



We will now define a sequences of languages whose union is the k−del−closure
of a given language L. Let:

KD0(L) = L

KD1(L) = KD0(L)→k (KD0(L) ∪ {1})

KD2(L) = KD1(L)→k (KD1(L) ∪ {1})

· · ·

KDj+1(L) = KDj(L)→k (KDj(L) ∪ {1})

· · ·

Clearly KDj(L) ⊆ KDj+1(L). Let

KD(L) =
⋃

j≥0

KDj(L)

Proposition 3.4 KD(L) is the k−del−closure of the language L.

Proof. Clearly L ⊆ KD(L).
Let v ∈ KD(L) and u1vu2 ∈ KD(L), |u2| ≤ k. Then v ∈ KDi(L) and

u1vu2 ∈ KDj(L) for some integers i, j ≥ 0. If l = max{i, j}, then v ∈ KDl(L)
and u1vu2 ∈ KDl(L). This implies u1u2 ∈ KDl+1(L) ⊆ KD(L). Therefore
KD(L) is a k−del−closed language containing L.

Let T be a k−del−closed language such that L = KD0(L) ⊆ T . Since T is
k−del−closed, if KDj(L) ⊆ T then KDj+1(L) ⊆ T . Using induction, it follows
then that KD(L) ⊆ T . 2

Since, by [3], the family of regular languages is closed under k−deletion,
it follows that if L is regular, then the languages KDj(L), j ≥ 0, are also
regular. However, it is an open question whether KD(L) is regular for any
regular language L ⊆ X∗. If L is commutative, we have the following result.

Proposition 3.5 Let L ⊆ X∗ be a regular language. If L is commutative, then
KD(L) is commutative and regular.

Proof. Let us show first that KD(L) is commutative. To this end, it is suffi-
cient to show that KDj+1(L) is commutative if KDj(L) is commutative. Let
xuvy ∈ KDj+1(L). By the definition of KDj+1(L), there exist w ∈ KDj(L),
z ∈ KDj(L) ∪ {1}, such that w ∈ (xuvy ←k z). Since KDj(L) is commuta-
tive, xuvyz ∈ KDj(L) and xvuyz ∈ KDj(L). From the fact that z, xvuyz ∈
KDj(L) and the definition of KDj+1(L), it follows that xvuy ∈ KDj+1(L), i.e.
KDj+1(L) is commutative.

We will show next that KD(L) is regular. To this aim, we show that
u ≡ v(PKDj(L)) implies u ≡ v(PKDj+1(L)). Let u ≡ v(PKDj(L)) and let
xuy ∈ KDj+1(L). By the definition of KDj+1(L), there exists w ∈ KDj(L),
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z ∈ KDj(L) ∪ {1}, such that w ∈ (xuy ←k z). Since KDj(L) is commutative,
xuyz ∈ KDj(L). Hence xvyz ∈ KDj(L). From the fact that z ∈ KDj(L)
and by the definition of KDj+1(L), it follows that xvy ∈ KDj+1(L). In
the same way, xvy ∈ KDj+1(L) implies xuy ∈ KDj+1(L). Consequently,
u ≡ v(PKDj+1(L)) holds. This means that the number of congruence classes
of PKDj+1(L) is smaller than or equal to that of PKDj(L). Remark that

KD0(L) ⊆ KD1(L) ⊆ . . . ⊆ KDn(L) ⊆ KDn+1(L) . . .

It can be shown that KDt(L) = KDt+1(L) for some t, t ≥ 1. Thus, KD(L) =
KDt(L) which implies that KD(L) is regular. 2

4 Right k−unitary languages and k−prefix codes

Recall (see [3]) that a k−prefix code P is a nonempty language, P ⊆ X+, such
that u, u1xu2 ∈ P with u = u1u2 and |u2| ≤ k implies x = 1. A code is a prefix
code iff it is a 0−prefix code and an outfix code iff it is a k−prefix code for
k ≥ 0.

If Pk(X) is the family of all the k−prefix codes over X with |X | ≥ 2, then
we have the following strict hierarchy:

· · · ⊂ Pi+1(X) ⊂ Pi(X) ⊂ · · · ⊂ P1(X) ⊂ P0(X)

It is immediate that Pi+1(X) ⊆ Pi(X). However Pi+1(X) ⊂ Pi(X). Suppose
that X = {a, b, · · ·} and let Ti = {anbn|n ≥ i + 1}. Then Ti is a i−prefix code,
but not a (i + 1)−prefix code.

The relation ρk defined on X∗ by:

uρkv ⇔ v = u1xu2, u = u1u2, |u2| ≤ k,

is reflexive, antisymmetric and left compatible. The transitive closure ρ̄k of ρk

is a left compatible partial order. The language P is a k−prefix code iff it is an
anti-chain with respect to ρk (see [3]). Remark that if k = 0, ρ0 is the usual
prefix order.

Let L ⊆ X+ be a nonempty language and let:

Prfk(L) = {u ∈ L| u = v1xv2, v = v1v2 ∈ L, |v2| ≤ k, ⇒ x = 1}.

It is easy to see that Prfk(L) is a k−prefix code and that Prfk(L) = {u ∈
L|vρku, v ∈ L ⇒ v = u}, i.e., Prfk(L) is the set of words in L that are minimal
with respect to the relation ρk or ρ̄k (see [3]).

A subsemigroup S ⊆ X∗ is called right k−unitary if u = u1u2, u1xu2 ∈
S, |u2| ≤ k, implies x ∈ S. Clearly, 1 ∈ S. Hence every right k−unitary
subsemigroup is a submonoid, called right k−unitary submonoid.

Let X = {a, b}. Then a∗ and Lab are right k−unitary for every k ≥ 0.
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Proposition 4.1 Let L ⊆ X∗ be a nonempty language and let KU(L) (re-
spectively KUK(L)) be the intersection of all the right k−unitary submonoids
(k−submonoids) containing L. Then KU(L) (respectively KUK(L)) is a right
k−unitary submonoid (k−submonoid) of X∗.

Proof. Immediate. 2

Remark that KU(L) (resp. KUK(L)) is the smallest k−unitary submonoid
(k−submonoid) of X∗ containing L. The submonoid KU(L) is called the right
k−unitary closure of L.

Let Uk(L) = {x ∈ X∗|∃u = u1u2 ∈ L, |u2| ≤ k with u1xu2 ∈ L}. Note
that Uk(L) = L ⇀↽k L. If L is regular then, from a result of [3], it follows that
Uk(L) is also regular.

Define the sequence:

U0
k (L) = L ∪ {1}, U1

k (L) = Uk(U0
k (L)), . . . , U i+1

k (L) = Uk(U i
k(L)) . . .

Clearly, U i
k(L) ⊆ U i+1

k (L).

Proposition 4.2 If L ⊆ X∗ is nonempty, then KU(L) =
⋃

i≥0 U i
k(L).

Proof. Let T =
⋃

i≥0 U i
k(L). Clearly L ⊆ T . Let u = u1u2 ∈ T and u1xu2 ∈ T

with |u2| ≤ k. Then u = u1u2, u1xu2 ∈ U i
k(L) for some i ≥ 0. This implies

x ∈ U i+1
k (L) ⊆ T . Hence T is right k−unitary and KU(L) ⊆

⋃
i≥0 U i

k(L).

We show by induction that
⋃

i≥0 U i
k(L) ⊆ KU(L). For i = 0, the assertion

holds because L ⊆ KU(L) and hence U0
k (L) ⊆ KU(L). Assume that U i

k(L) ⊆
KU(L) and let x ∈ U i+1

k (L). Then there exists u ∈ U i
k(L), u = u1u2 with

|u2| ≤ k such that u1xu2 ∈ U i
k(L). Hence:

u = u1u2 ∈ KU(L), u1xu2 ∈ KU(L).

Since KU(L) is right k−unitary, it follows that x ∈ KU(L), which implies
U i+1

k (L) ⊆ KU(L). Consequently, KU(L) =
⋃

i≥0 U i
k(L). 2

5 Right m−dense and k−ins−closed languages

A k−ins−closed language L is said to be minimal if L′ ⊆ L, with L′ a k−ins−
closed language, implies L′ = L. The next result shows that a k−ins−closed lan-
guage in X+ cannot be minimal and hence other restrictions to the minimality
are necessary in order to get positive results.

Proposition 5.1 There is no minimal k−ins−closed language in X+.

11



Proof. Suppose that L ⊆ X+ is a minimal k−ins−closed language. Let w ∈ L
with minimal length m = |w| and let L′ = L\{w}. The language L′ is not
k−ins−closed, therefore there exist u = u1u2 ∈ L′, v ∈ L′, |u2| ≤ k, such
that u1vu2 /∈ L′. However, since L′ ⊆ L and L is k−ins−closed, we have that
u1vu2 ∈ L. Therefore u1vu2 = w, which implies |w| > |u| - a contradiction. 2

A language L ⊆ X∗ is called right m−dense if for any w ∈ X∗, there exists
x ∈ X∗, |x| ≤ m, such that wx ∈ L. A right m−dense and k−ins−closed
language L is said to be minimal if it does not properly contain any right
m−dense and k−ins−closed language. It has been shown in [2] that every right
m−dense language contains a minimal one.

Proposition 5.2 Every right m−dense and k−ins−closed language L contains
a minimal right m−dense and k−ins−closed language.

Proof. Let D(L) = {Lδ|δ ∈ ∆} be the family of the right m−dense and
k−ins−closed languages Lδ contained in L and let I = {Lγ | γ ∈ Γ} be an
infinite descending chain of languages Lγ belonging to the family D(L):

L ⊇ . . . ⊇ Lα ⊇ . . . ⊇ Lζ ⊇ . . .

Let L0 = ∩γ∈ΓLγ and let Xm be the set of words of length ≤ m.
Suppose first that L0 is not right m−dense. Then there exists u ∈ X∗ such

that uxj /∈ L0 for all xj ∈ Xm, that is, for each xj there exists a Lγj
∈ I such

that uxj /∈ Lγj
. If Lφ = ∩1≤j≤nLγj

where n = |Xm|, then uxj /∈ Lφ for every
xj ∈ Xm. Since I is a descending chain, Lφ ∈ I and Lφ is right m−dense, a
contradiction. Hence L0 is right m−dense and therefore L0 6= ∅. It is immediate
that, if not empty, the intersection of k−ins−closed languages is a k−ins−closed
language. Hence L0 is also k−ins−closed.

As every infinite descending chain I in D(L) has a lower bound L0, the
family D(L) is inductive. Consequently, according to Zorn’s lemma, D(L) has
at least a minimal element which is a minimal right m−dense and k−ins−closed
language contained in L. 2

Corollary 5.1 Let L be a regular right dense k−ins−closed language. Then
L contains a minimal right m−dense and k−ins−closed language, m being a
positive integer depending on L.

Proof. It follows from a result of [2] stating that every right dense regular lan-
guage is m−dense for some positive integer. 2

Proposition 5.3 Let L be a minimal right m−dense and k−ins−closed lan-
guage. Then L contains a maximal prefix code P such that P ∗ is right m−dense.

Proof. Since L is k−ins−closed, L is a subsemigroup that is right m−dense.
By a result of [2] this implies that L contains a maximal prefix code P with P ∗

right m−dense. 2
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Proposition 5.4 Let L ⊆ X∗. Then for every k ≥ 0 and m ≥ 1, there exists a
right m−dense and k−ins−closed language Lµ such that:

(i) L ⊆ Lµ.
(ii) If L′ is right m−dense and k−ins−closed with L ⊆ L′ ⊆ Lµ, then

L′ = Lµ.

Proof. Let I = {Lγ | γ ∈ Γ} be an infinite descending chain of right m−dense
and k−ins−closed languages Lγ containing L:

. . . ⊇ Lα ⊇ . . . ⊇ Lδ ⊇ . . . ⊇ L.

This chain is not empty because it contains X∗. Let L0 = ∩γ∈ΓLγ and let Xm

be the set of words of length ≤ m.
As in the proof of Proposition 5.2, it can be shown that L0 is right m−dense

and k−ins−closed. If F (L) denotes the family of the right m−dense and
k−ins−closed languages then, by applying the Zorn’s lemma, we can deduce
that F (L) has at least a minimal element Lµ satisfying the conditions (i) and
(ii). 2
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